|| Parallels

Parallels Virtualization SDK

Programmer's Guide
November 21, 2016

Parallels International GmbH
Vordergasse 59

8200 Schaffhausen
Switzerland

Tel: + 41 52672 20 30
www.parallels.com

Copyright © 1999-2016 Parallels International GmbH. All rights reserved.

This product is protected by United States and international copyright laws. The product’s underlying technology,
patents, and trademarks are listed at http://www.parallels.com/about/legal/.

Microsoft, Windows, Windows Server, Windows Vista are registered trademarks of Microsoft Corporation.

Apple, Mac, the Mac logo, OS X, macQOS, iPad, iPhone, iPod touch are trademarks of Apple Inc., registered in the US
and other countries.

Linux is a registered trademark of Linus Torvalds.

All other marks and names mentioned herein may be trademarks of their respective owners.

Contents

L€ T=] T 3 = T (=T o PO 6
=T 4= 6
SYStEeM ReQUIrEMENTS ... 6

Parallels C APl CONCEPLS ..ueuuuiiiiiieiiiiriiesisirreassssrsnassssrssass s s rssnsssssrsnnsssssrrnnnssssssnnnnes 8
Compiling Client APPlICatioNSccooviiiie 8

CompPiliNG WIth SAKWWID ...vvveiieci et e e e s e e e e e e s aaaee s 8

Compiling WIth FramMmEWOIKccoiiiiiie i 14
HANAIES .o 18
SYNCAIONOUS FUNCHONS......uviiii i e e e 20
ASYNCNIONOUS FUNCHIONS ... i e e e e e e e e e e e 20
StriNGS S RETUMN VAIUBSo 25
ErrOr HANAING ettt 26

Parallels C APl by EXample........cuueeeeimmmmmmmmmmmmieeeeeeeieeeenessessssssssssssssssssssssssssssssssssssnn 30
Obtaining Server Handle and LOgging INoooiiieiiii i 31
[T @] 01T = 11 [0] oIS F PP PP PP PPPPPPPPPPPPPPPP 35

Retrieving Host Configuration INformation.............ccceoiiiiiiiiiiic e 35
Managing Parallels Service PreferenCesoociiiiiiiiiii e 37
Searching for ParallelS SEIVEISouuiiiiiiii e 41
Managing Parallels SErviCE USEISuuviiiiiiiiiiiiiiic e 43
Managing Files In The HOST OS ... 48
ManNagiNg LICENSES. ... 51
Obtaining a Problem RePOrcoiiiii s 53
Virtual Maching OPEratioNS...........uuuiiiiieeieeie e 55
Obtaining the Virtual Machings LIStuuiiiiiiiiiii e 55
Searching for Virtual Maching DY NaMIEvviieiiiiiiiiic e 57
Obtaining Virtual Machine Configuration Information............ccccceeeeiiiiiiiiiece e 59
Determining Virtual Maching STaEeviiiiiiiiiiiic e 61
Starting, Stopping, Resetting a Virtual Maching ... 63
Suspending and Pausing a Virtual Maching ... 64
Creating a New Virtual MacChing..........uviiiiiiee o e e 66

Searching for Virtual MaChiNESooiiiiiiiiii e 69

Contents

Adding an Existing Virtual Machingooiiiiiiiii e 73
Cloning a Virtual MaChINEvvviiieii i e e e e e e 75
Deleting a Virtual MacChINEvvviiiiiiiiiieeee e 77
Modifying Virtual Machine Configurationocuvieiiiiiiiiii e 79
Managing User ACCESS RIGNTS.......viiiiiiiiiei e 91
Working with Virtual Maching TEMPIAtESccuviiiiiiiiiii e 94

B NS e 102
Receiving and Handling EVENIS ... 102
Responding to Parallels Service QUESTIONScouuiiiiiiiiiieiiiice e 104
PerformancCe STAtISTICSoooiiiiiii e 112
Obtaining Performance StatiStICS.uiiiiiiiiiii e 112
Performance MONITOMNGcooe e 116
ENCryption PlUG-iN.....ooo 121
ENcCryption PlUG-in BaSICS.........cviiiiiiiiiiiii e 121

The Encryption API REfEIrENCEuveiiiiiieii e 121
IMPIEMENTING @ PIUGIN 1.t 124
Building the DYNamiC LIDIaryuveiiiiiiieiees ettt 130
Plug-in Installation @and USAGEveviiiiiiiiiiiiiie ettt 131
Parallels Python APl CONCEPLSccuurrrrrmmmrmmmmmmmmmmrsnssnsnnnns 132
Package and MOAUIESiii i e e e e e e 132
ClBSSES ...ttt 133
ClasSS METNOTAS ..ot 133
SYNCHrONOUS IMETNOAS ...t e e e e 134
ASYNCHIONOUS METNOGASie it e e e 134
ErrOr HaNAING ... e e 137
Parallels Python API by EXample..........ccoiiir s n s 138
Creating a Basic APPIICATION 138
Connecting to Parallels Service and Logging IN...ocoooeeieii i, 140
HOST OPBIatiONS .. .coiiiiii it e e e e e e e e 142
Retrieving Host Configuration INFOvieiee i 142
Managing Parallels Service PreferEnCeScuvvvviiiiiii i 144
Virtual Maching Operations........oo i 145
Obtaining the Virtual Maching LIST..........ocuiiiiiiiii e 146

Searching for a Virtual MacChingooiiiiiii e 147

Contents

Performing POWEr OPErationSoioiiiiiieiiiiiie et 148
Creating a New Virtual MacChiNe.........uuuiiiiiiie e e e e e e e e 149
Obtaining Virtual Machine Configuration Data.............cceiiiiiiiiiiieiee e 151
Modifying Virtual Machine Configuration ...t 154
Adding an Existing Virtual Machingociiiiiiiiiiii e 159
Removing an Existing Virtual Maching ... 160
Cloning a Virtual MaChINEuviiieeiii et e e a e e 161
Executing a Program in a Virtual Machine............cccccc 161
REMOTE DESKIOPD ACCESS. . i iiiiiieitiii ittt e e e e e 163
Creating a Simple OS Installation Program ... 164

CHAPTER 1

Getting Started

In This Chapter

OVBIVIEW oottt e e e e e 6
SyStEM REQUIFEMENTS ... i e e e 6
Overview

Parallels Virtualization SDK is a development kit that can be used to create and integrate custom
software solutions with Parallels Desktop for Mac.

Parallels Virtualization SDK comprises the following components:
« C header files and dynamic libraries.

» Python package for developing client applications in Python.
» Virtualization SDK Programmer's Guide (this document).

« C API Reference Guide.

« Python API Reference Guide.

System Requirements

To develop applications on Mac computers using the SDK, the following requirements must be
met.
Hardware Requirements

« Mac computer with Intel Core 2 Duo, Core i3, Core i5, Core i7, or Xeon processor.
« Minimum 2 GB RAM.

Software Requirements

« OS X Yosemite 10.10 or higher.
« OS X Mavericks 10.9.4 or higher.
+ Mac OS X Mountain Lion 10.8.5 or higher.

Getting Started

« Mac OS X Lion 10.7.5 or higher.
« Python 2.7 to develop applications in Python.

CHAPTER 2

Parallels C APl Concepts

In This Chapter

Compiling Client APPRICALIONS eeeeeenneeenee 8

HANAIES ... e 18
SYNCNIONOUS FUNCHONS ...ttt eeneseneeeeeeees 20
ASYNCArONOUS FUNCLIONS ...t e e e e 20
StriNGS S RETUMN VAIUESvviiiiiiiii e nnannnennnennne 25
o gl o F= T T 115 TSP 26

Compiling Client Applications

Parallels Virtualization SDK for OS X is provided as a framework. The framework is installed in the
following directory:

/Library/Frameworks/ParallelsVirtualizationSDK. framework

You can use the framework just like any other Apple framework when creating development
projects and compiling applications. Alternately, you can compile and build your applications
without using the framework. In such a case, you will have to specify all the necessary paths to the
SDK source files manually.

When using the framework, the dynamic library, which is supplied with the SDK, will be directly
linked to the application. If you would like to load the dynamic library at runtime, the Parallels
Virtualization SDK includes a convenient d1open wrapper for this purpose called SdkWrap. Using
the wrapper, you can load and unload the library symbols at any time with one simple call. Please
note that in order to use SdkWrap, you must compile your application without using the framework.
The wrapper source files are located in the Helpers/SdkWrap directory, which is located in the
main SDK installation directory.

The following subsections describe various compilation scenarios in detail and provide code
samples.

Compiling with SdkWrap

When using SdkWrap, your program must contain the following:

e The #include "SdkWrap.h" directive. This header file defines the wrapper functions.

Parallels C APl Concepts

+ The #define SDK LIB NAME "libprl sdk.dylib" directive. This is the name of the
dynamic library included in the SDK.

+ The sdkWrap Load (SDK_LIB NAME) function call that will load the dynamic library symbols.

+ The sdkWrap Unload () function call that will unload the dynamic liorary when it is no longer
needed.

To compile a program, the following compiler options and instructions must be used:

« The DYN API WRAP preprocessor macro must be defined.

Full paths to the Headers and the Helpers/SdkWrap directories must be specified. Both
directories are located in the main SDK installation directory.

+ The sdkWrap. cpp file must be included in the project and must be built together with the
main target.

The 1ibd1 library must be linked to the application. This is the standard dynamic linking
interface library needed to load the SDK library.

Using Makefile

The following is a sample Makefile that demonstrates the implementation of the requirements
described above. To compile a program and to build an executable, type make in the Terminal
window. To clean up the project, type make clean. Please note that the SOURCE variable must
contain the name of your source file name.

Source file name.

Substitute the file name with your own.
SOURCE = HelloWorld

Target executable file name.
Here we are using the same name as the source file name.
TARGET = $ (SOURCE)

Path to the Parallels Virtualization SDK files.
SDK_PATH = /Library/Frameworks/ParallelsVirtualizationSDK.framework

Relative path to the SdkWrap directory containing
the SDK helper files. The files are used to load
the dynamic library.

SDK_WRAP PATH = Helpers/SdkWrap

OBJS = SdkWrap.o $(SOURCE) .o

CXX = g++
CXXFLAGS = -DDYN API WRAP -I$(SDK_PATH) /Headers -I$(SDK_PATH)/$ (SDK _WRAP PATH)
LDFLAGS = -1d1

all : $(TARGET)

$ (TARGET) : $ (OBJS)
$(CXX) -o $@ $(LDFLAGS) $(OBJS)

S (SOURCE) .o : $(SOURCE) .cpp
$(CXX) -c -o $@ $(CXXFLAGS) $ (SOURCE) .cpp

Parallels C APl Concepts

SdkWrap.o : $(SDK_PATH) /$ (SDK WRAP PATH) /SdkWrap.cpp
$(CXX) -c -0 $@ $ (CXXFLAGS) $(SDK_PATH)/$(SDK_WRAP_PATH)/Sderap.cpp

clean:
@Qrm -f $(OBJS) $ (TARGET)

.PHONY : all clean
Using Xcode IDE

If you are using the Xcode IDE, follow these steps to set up your project:

1 Addthe sdkWrap.h and the SdkWrap.cpp files to your project.

2 Inthe Search Paths collection, specify:
- afull path to the Helpers/SdkWrap directory (contains the wrapper source files)
« afull path to the Headers directory (contains the SDK header files)
« afull path to the Libraries directory (contains the dynamic library)

3 Inthe Preprocessor collection, add the DYN API WRAP pPreprocessor macro.

Example

The following is a complete sample program that demonstrates the usage of the SdkWrap
wrapper. The program loads the dynamic library, initializes the API, and then logs in to the local
Parallels Service. You can copy the entire program into a file on your Mac and try building and then
running it. The program uses a cross-platform approach, so it can also be compiled on Windows
and Linux machines.

#include "SdkWrap.h"
#include <stdio.h>

finclude <stdlib.h>
#include <string.h>

pifdef WIN_
#include <windows.h>
felse

#include <unistd.h>
fendif

PRL RESULT LoginLocal(PRL_HANDLE &hServer) ;
PRL RESULT LogOff (PRL_HANDLE &hServer) ;

Ny

int main(int argc, char* argv[])
{
// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle
PRL HANDLE hJobResult = PRL INVALID HANDLE; // job result
PRL HANDLE hServer = PRL INVALID HANDLE; // server handle

// Variables for return codes.

PRL RESULT err = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

10

Parallels C APl Concepts

// Log in to Parallels Service.
err = LoginLocal (hServer) ;

// Log off.
err = LogOff (hServer);

printf ("\nEnd of program.\n\n");
printf ("Press Enter to exit...");
getchar () ;

exit (0) ;
}

// Initializes the SDK library and
// logs in to the local Parallels Service.
//
PRL RESULT LoginLocal (PRL HANDLE &hServer)
{
// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle
PRL HANDLE hJobResult = PRL INVALID HANDLE; // job result

// Variables for return codes.
PRLiRESULT err = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Use the correct dynamic library depending on the platform.
#ifdef WIN

#define SDK LIB NAME "prl sdk.dll"

#elif defined(LIN)

#define SDK LIB NAME "libprl sdk.so"

#elif defined(MAC)

#define SDK LIB NAME "libprl sdk.dylib"

#endif

// Load SDK library.
if (PRL_FAILED (SdkWrap Load (SDK_LIB NAME)) &&
PRL_FAILED (SdkWrap Load("./" SDK_LIB NAME)))

fprintf (stderr, "Failed to load " SDK LIB NAME "\n");
return -1;

// Initialize the API. In this example, we are initializing the

// API for Parallels Desktop.

// To initialize in the Parallels Workstation mode, pass PAM WORKSTATION
// as the second parameter.

// To initialize for Parallels Server, pass PAM SERVER.

// See the PRL APPLICATION MODE enumeration for all possible options.
err = PrlApi InitEx (PARALLELS API VER, PAM DESKTOP, 0, 0);

if (PRL_FAILED (err))
{

fprintf (stderr, "PrlApi InitEx returned with error: %$s.\n",
prl result to string(err));

PrlApi Deinit () ;

SdkWrap Unload() ;

return -1;

}

// Create a server handle (PHT SERVER).

Parallels C APl Concepts

err = PrlSrv Create (&hServer) ;
if (PRL_FAILED (err))
{
fprintf (stderr, "PrlSvr Create failed, error: 3%s",
prl result to string(err));
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Log in (asynchronous call).
hJob = PrlSrv LoginLocal (hServer, NULL, NULL, PSL NORMAL SECURITY) ;

// Wait for a maximum of 10 seconds for
// the job to complete.
err = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (err))
{
fprintf (stderr,
"PrlJob Wait for PrlSrv_Login returned with error: %$s\n",
prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Rnalyze the result of PrlSrv_Login.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// First, check PrlJob GetRetCode success/failure.
if (PRL_FAILED (err))
{
fprintf (stderr, "PrlJob GetRetCode returned with error: %$s\n",
prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Now check the Login operation success/failure.
if (PRL_FAILED (nJobReturnCode))
{
PrlHandle Free (hJob);
PrlHandle Free (hServer);
printf ("Login job returned with error: %$s\n",
prl_result_to_string(nJobReturnCode));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;
}
else
{
printf ("Login was successful.\n");

}

12

Parallels C APl Concepts

return 0;

}

// Logs off the Parallels Service and
// deinitializes the SDK library.

//

PRL RESULT LogOff (PRL HANDLE &hServer)
{

hJob =
hJobResult =

PRL HANDLE
PRL HANDLE

PRL INVALID HANDLE;
PRL INVALID HANDLE;

PRL RESULT
PRL RESULT

err = PRL ERR UNINITIALIZED;
nJobReturnCode = PRL ERR UNINITIALIZED;

// Log off.
hJob = PrlSrv Logoff (hServer);
err = PrlJob Wait (hJob, 1000) ;
if (PRL_FAILED(err))
{
fprintf (stderr,
prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Get the Logoff operation return code.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// Check the PrlJob GetRetCode success/failure.
if (PRL_FAILED (err))
{

fprintf (stderr,

prl result to string(err));

PrlHandle Free (hJob);

PrlHandle Free (hServer);

PrlApi Deinit();

SdkWrap Unload() ;

return -1;

}

// Report success or failure of PrlSrv_Logoff.
if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "PrlSrv Logoff failed with error:
prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;
}
else
{
printf ("Logoff was successful.\n");

}

// Free handles that are no longer required.
PrlHandle Free (hJob);

"PrlJob Wait for PrlSrv Logoff returned error:

"PrlJob GetRetCode failed for PrlSrv_Logoff with error:

%$s\n",

%s\n",

$s\n",

13

Parallels C APl Concepts

PrlHandle Free (hServer);

// De—-initialize the Parallels API, and unload the SDK.
PrlApi Deinit();

SdkWrap Unload() ;

return 0;

Compiling with Framework

If you are using the ParallelsVirtualizationSDK framework, the program must contain the following
include directive:

#include "ParallelsVirtualizationSDK/Parallels.h"

Parallels.h is the main SDK header file. Please note the framework name in front of the SDK
header file name. This is a common requirement when using a framework.

Note: The difference between the SdkWrap scenario (described in the previous subsection) and the
framework scenario is that Parallels.h must be included when using the framework, while

SdkWrap .h must be included when using SdkWrap. The two files must never be included together.
Please also note that you don't have to load the dynamic library manually in your program when using the
framework.

The only compiler option that must be specified when using the framework is:

—-framework ParallelsVirtualizationSDK

Using Makefile

The following sample Makefile can be used to compile a program using the
ParallelsVirtualizationSDK framework:

Source file name.
Substitute the file name with your own.
SOURCE = HelloWorld

Target executable file name.
Here we are using the same name as the source file name.

TARGET = $ (SOURCE)

CXX = g++
LDFLAGS = —-framework ParallelsVirtualizationSDK

all : $(TARGET)

S (TARGET) : $(OBJS)
$(CXX) -o $Q@ S (LDFLAGS) $(OBJS)

$ (SOURCE) .0 : $(SOURCE) .cpp
$(CXX) -c -o $@ $(SOURCE) .cpp

clean:

14

Parallels C APl Concepts

@rm -f $(OBJS) $(TARGET)

.PHONY : all clean

Using Xcode IDE

When setting up an Xcode project, the only thing that you have to do is add the
ParallelsVirtualizationSDK framework to the project. No other project modifications are necessary.

Sample

The following is a complete sample program that demonstrates the usage of the
ParallelsVirtualizationSDK framework.

#include "ParallelsVirtualizationSDK/Parallels.h"
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

pifdef WIN_
#include <windows.h>
felse

#include <unistd.h>
fendif

PRL RESULT LoginLocal (PRL HANDLE &hServer) ;
PRL RESULT LogOff (PRL HANDLE &hServer);

LILTTTTLL L7770 7777777777777 7777777777

int main(int argc, char* argv[])
{
// Variables for handles.
PRL HANDLE hServer = PRL INVALID HANDLE; // server handle

// Variables for return codes.
PRL RESULT err = PRL ERR UNINITIALIZED;

// Log in.
err = LoginLocal (hServer) ;

// Log off
err = LogOff (hServer);

printf ("\nEnd of program.\n\n");
printf ("Press Enter to exit...");
getchar () ;

exit (0);

// Intializes the SDK library and
// logs in to the local Parallels Service.
//
PRL RESULT LoginLocal(PRLiHANDLE &hServer)
{
// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle

Parallels C APl Concepts

// Variables for return codes.
PRL_RESULT err = PRL_ERR_UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Initialize the API. In this example, we are initializing the

// API for Parallels Workstation.

// To initialize in the Parallels Desktop mode, pass PAM DESKTOP

// as the second parameter.

// To initialize for Parallels Server, pass PAM SERVER.

// See the PRL APPLICATION MODE enumeration for all possible options.
err = PrlApi InitEx (PARALLELS API VER, PAM DESKTOP, 0, 0);

if (PRL_FAILED (err))
{
fprintf (stderr, "PrlApi InitEx returned with error: %s.\n",
prl result to string(err));
PrlApi Deinit();
return -1;

}

// Create a server handle (PHT SERVER).
err = PrlSrv Create (&hServer) ;
if (PRLiFAILED(err))
{
fprintf (stderr, "PrlSvr Create failed, error: %s",
prl_result_to_string(err));
PrlApi Deinit();
return -1;

}

// Log in (asynchronous call).
hJob = PrlSrv_LoginLocal(hServer, NULL, NULL, PSL NORMAL SECURITY) ;

// Wait for a maximum of 10 seconds for
// the job to complete.
err = PrlJob Wait (hJdob, 1000);
if (PRL_FAILED (err))
{
fprintf (stderr,
"PrlJob Wait for PrlSrv_Login returned with error: %$s\n",
prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
return -1;

}

// Analyze the result of PrlSrv Login.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// First, check PrlJob GetRetCode success/failure.
if (PRL_FAILED(err))
{
fprintf (stderr, "PrlJob GetRetCode returned with error: %s\n",
prl_result_to_string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
return -1;

16

Parallels C APl Concepts

// Now check the Login operation success/failure.
if (PRL_FAILED (nJobReturnCode))
{
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
printf ("Login job returned with error: %$s\n",
prl_result_to_string(nJobReturnCode));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
return -1;
}
else
{
printf ("Login was successful.\n");

}

return 0;

}

// Log off the Parallels Service and
// deinitializes the SDK library.
//
PRL RESULT LogOff (PRL HANDLE &hServer)
{
PRL HANDLE hJob = PRL INVALID HANDLE;

PRL RESULT err = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Log off.

hJob = PrlSrv Logoff (hServer);
err = PrlJob Wait (hJob, 1000) ;
if (PRL_FAILED (err))

{

fprintf (stderr, "PrlJdob Wait for PrlSrv Logoff returned error:

prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
return -1;

}

// Get the Logoff operation return code.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// Check the PrlJob GetRetCode success/failure.
if (PRL_FAILED (err))
{

fprintf (stderr, "PrlJob GetRetCode failed for PrlSrv Logoff with error:

prl_result_to_string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
return -1;

}

// Report success or failure of PrlSrv Logoff.
if (PRL_FAILED (nJobReturnCode))
{

$s\n",

17

Parallels C APl Concepts

fprintf (stderr, "PrlSrv Logoff failed with error: %$s\n",
prl_result_to_string(nJobReturnCode));

PrlHandle Free (hJob);

PrlHandle Free (hServer);

PrlApi Deinit();

return -1;

}

else

{

printf ("Logoff was successful.\n");

}

// Free handles that are no longer required.
PrlHandle Free (hJob);
PrlHandle Free (hServer);

// De-initialize the Parallels API, and unload the SDK.
PrlApi Deinit () ;

return 0;

Handles

The Parallels C APl is a set of functions that operate on objects. Objects are not accessed directly.
Instead, references to these objects are used. These references are known as handles.

Handle Types

PRL HANDLE is the only handle type used in the C APL. It is a pointer to an integer and it is defined
in Pr1iTypes.h.

PRL_HANDLE can reference any type of object within the API. The type of object that
PRL_HANDLE references determines the PRL_HANDLE type. A list of handle types can be found
inthe PRL_HANDLE TYPE enumeration in Prl1Enums.h.

A handles' type can be extracted using the Pr1Handle GetType function. A string
representation of the handle type can then be obtained using the handle type to string
function.

Obtaining a Handle

A handle is usually obtained by calling a function belonging to another handle, which we may call a
"parent". For example, a virtual machine handle is obtained by calling a function that operates on
the Server handle. A virtual device handle is obtained by calling a function that operates on the
virtual machine handle, and so forth. The Parallels C APl Reference guide contains a description
of every available handle and explains how each particular handle type can be obtained. The
examples in this guide also demonstrate how to obtain handles of different types.

18

Parallels C APl Concepts

Freeing a Handle

Parallels APl handles are reference counted. Each handle contains a count of the number of
references to it held by other objects. A handle stays in memory for as long as the reference count
is greater than zero. A program is responsible for freeing any handles that are no longer needed. A
handle can be freed using the Pr1Handle Free function. The function decreases the reference
count by one. When the count reaches zero, the object is destroyed. Failing to free a handle after it
has been used will result in a memory leak.

Multithreading

Parallels APl handles are thread safe. They can be used in multiple threads at the same time. To
maintain the proper reference counting, the count should be increased each time a handle is
passed to another thread by calling the Pr1Handle AddRef function. If this is not done, freeing a
handle in one thread may destroy it while other threads are still using it.

Example

The following code snippet demonstrates how to obtain a handle, how to determine its type, and
how to free it when it's no longer needed. The code is a part of the bigger example that
demonstrates how to log in to a Parallels Service (the full example is provided later in this guide).

PRL HANDLE hServer = PRL INVALID HANDLE;
PRL RESULT ret;

ret = PrlSrv Create (&hServer);
if (PRL_FAILED (ret))
{
fprintf (stderr, "PrlSvr Create failed, error: 3%s",
prl result to string(ret));
return PRL ERR FATILURE;
}

// Determine the type of the hServer handle.
PRL HANDLE TYPE nHandleType;
PrlHandle GetType (hServer, &nHandleType) ;
printf ("Handle type: %$s\n",

handle type to string(nHandleType)) ;

// Free the handle when it is no longer needed.
PrlHandle Free (hServer);

19

Parallels C APl Concepts

Synchronous Functions

The Parallels C API provides synchronous and asynchronous functions. Synchronous functions run
in the same thread as the caller. When a synchronous function is called it completes executing
before returning control to the caller. Synchronous functions return PRL_RESULT, which is a
integer indicating success or failure of the operation. Consider the Pr1Srv_ Create function. The
purpose of this function is to obtain a handle of type PHT SERVER. The handle is required to
access most of the functionality within the Parallels C API. The syntax of Pr1Srv Create is as
follows:

PRL RESULT PrlSrv Create (

PRL HANDLE PTR handle
)i

The following is an example of the Pr1Srv Create function call:

// Declare a handle variable.
PRL HANDLE hServer = PRL INVALID HANDLE;

// Call the PrlSrv Create to obtain the handle.
PRL RESULT res = PrlSrv Create (&hServer);

// Examine the function return code.
// PRL FAILED is a macro that evaluates a variable of type PRL RESULT.
// A return value of True indicates success; False indicates failure.
if (PRL_FAILED (res))
{

printf ("PrlSrv_ Create returned error: %$s\n",

prl result to string(res));
exit (ret) ;

Asynchronous Functions

An asynchronous operation is executed in its own thread. An asynchronous function that started
the operation returns to the caller immediately without waiting for the operation to complete. The
results of the operation can be verified later when needed. Asynchronous functions return
PRL_HANDLE, which is a pointer to an integer and is a handle of type PHT JOB. The handle is
used as a reference to the asynchronous job executed in the background. The general procedure
for calling an asynchronous function is as follows:

Register an event handler (callback function).
Call an asynchronous function.
Analyze the results of events (jobs) within the callback function.

Handle the appropriate event in the callback function.

a A ON =

Un-register the event handler when it is no longer needed.

Parallels C APl Concepts

The Callback Function (Event Handler)

Asynchronous functions return data to the caller by means of an event handler (or callback
function). The callback function could be called at any time, depending on how long the
asynchronous function takes to complete. The callback function must have a specific signature.
The prototype can be found in Pr1Api.h and is as follows:

typedef PRL METHOD PTR (PRL EVENT HANDLER PTR) (
PRL HANDLE hEvent,
PRL VOID PTR data
)

The following is an example of the callback function implementation:

static PRL RESULT OurCallback (PRL HANDLE handle, void *pData)

{
// Event handler code...

// You must always release the handle before exiting.
PrlHandle Free (handle);
}

A handle received by the callback function can be of type PHT EVENT or PHT JOB. The type can
be determined using the Pr1Handle GetType function. The PHT EVENT type indicates that the
callback was called by a system event. If the type is PHT JOB then the callback was called by an
asynchronous job started by the program.

To handle system events within a callback function:

1 Get the event type using Pr1Event GetType.

2 Examine the event type. If it is relevant, a handle of type PHT EVENT PARAMETER can be
extracted using Pr1Event GetParam.

3 Convertthe PHT EVENT PARAMETER handle to the appropriate handle type using
PrlEvtPrm ToHandle.

To handle jobs within a callback function:

1 Get the job type using Pr1Job GetType. A job type can be used to identify the function that
started the job and to determine the type of the result it contains. For example, a job of type
PJOC_SRV_GET VM LIST is started by Prisrv_GetvmList function call, which returns a
list of virtual machines.

2 Examine the job type. If it is relevant, proceed to the next step.

3 Get the job return code using Pr1Job_GetRetCode. If it doesn't contain an error, proceed to
the next step.

4 Get the result (a handle of type PHT RESULT) from the job handle using
PrlJob GetResult.

21

Parallels C APl Concepts

5 Get a handle to the result using Pr1Result GetParam. Note that some functions return a list
(ie. there can be more than a single parameter in the result). For example,
PrlSrv_GetVmList returns a list of available virtual machines. In such cases, use
PrlResult GetParamCount and PrlResult GetParamByIndex.

6 Implement code to use the handle obtained in step 5.

Note: You must always free the handle that was passed to the callback function before exiting,
regardless of whether you actually used it or not. Failure to do so will result in a memory leak.

The following skeleton code demonstrates implementation of the above steps. In this example, the
objective is to handle events of type PET DSP EVT HOST STATISTICS UPDATED that are
generated by a call to function Pr1srv SubscribeToHostStatistics, and to obtain the
result from a job of type PJOC SRV _GET VM LIST.

static PRL RESULT OurCallbackFunction (PRL HANDLE hHandle, PRL VOID PTR pUserData)
{

PRL JOB OPERATION CODE nJobType = PJOC UNKNOWN; // job type

PRL HANDLE TYPE nHandleType = PHT ERROR; // handle type

PRL HANDLE hVm = PRL INVALID HANDLE; // virtual machine handle

PRL HANDLE hParam = PRL INVALID HANDLE; // event parameter

PRL HANDLE hJobResult = PRL INVALID HANDLE; // job result

PRL UINT32 nParamsCount = -1; // parameter count

PRL UINT32 nParamIndex = -1; // parameter index

PRL RESULT err = PRL ERR UNINITIALIZED; // error

// Check the type of the received handle.
PrlHandle GetType (hHandle, &nHandleType) ;

if (nHandleType == PHT EVENT) // Event handle
{

PRL EVENT TYPE EventType;

PrlEvent GetType (hHandle, &EventType);

// Check if the event type is a statistics update.
if (EventType == PET DSP EVT HOST STATISTICS UPDATED)
{
// Get handle to PHT EVENT PARAMETER.
PRL HANDLE hEventParameters = PRL INVALID HANDLE;
PrlEvent GetParam(hHandle, 0, &hEventParameters):;

// Get handle to PHT SYSTEM STATISTICS.
PRL HANDLE hServerStatistics = PRL INVALID HANDLE;
PrlEvtPrm ToHandle (hEventParameters, &hServerStatistics);

// Code goes here to extract the statistics data
// using hServerStatistics.

PrlHandle Free (hServerStatistics);
PrlHandle Free (hEventParameters);
}
}
else if (nHandleType == PHT JOB) // Job handle
{
// Get the job type.
PrlJob GetOpCode (hHandle, &nJobType)

// Check if the job type is PJOC SRV _GET VM LIST.
22

Parallels C APl Concepts

if (nJobType == PJOC SRV GET VM LIST)
{
// Check the job return code.
PRL RESULT nJobRetCode;
PrlJob GetRetCode (hHandle, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "[B]%.8X: %s\n", nJobRetCode,
prl result to string(nJobRetCode)) ;
PrlHandle Free (hHandle);
return nJobRetCode;

err = PrlJob GetResult (hHandle, &hJobResult) ;
// 1f (err != PRL ERR SUCCESS), process the error here.

// Determine the number of parameters in the result.
PrlResult GetParamsCount (hJobResult, &nParamsCount) ;

// Iterate through the parameter list.
for (nParamIndex = 0; nParamIndex < nParamsCount ; nParamIndex++)

{
// Obtain a virtual machine handle (PHT VIRTUAL MACHINE) .

PrlResult GetParamByIndex (hJobResult, nParamIndex, &hVm);
// Code goes here to obtain virtual machine info from hVm.

// Free the handle when done using it.
PrlHandle Free (hVm) ;

}
PrlHandle Free (hJobResult) ;

}

PrlHandle Free (hHandle);
return PRL ERR SUCCESS;

Registering / Unregistering an Event Handler

The Pr1Srv RegEventHandler function is used to register an event handler,
PrlSrv_UnregEventHandler is used to unregister an event handler.

Note: When an event handler is registered, it will receive all of the events/jobs regardless of their origin. It
is the responsibility of the program to identify the type of the event and to handle each one accordingly.

// Register an event handler.
ReturnDataClass rd; // some user-defined class.
Prlsrv RegEventHandler (hServer, OurCallbackFunction, &rd):;

// Make a call to an asynchronous function here.

// OurCallbackFunction will be called by the background thread
// as soon as the job is completed, and code within

// OurCallbackFunction can populate the ReturnDataClass instance.
// For example, we can make the following call here:

hJob = PrlSrv GetVmList (hServer) ;
PrlHandle Free (hJob);

23

Parallels C APl Concepts

// Please note that we still have to obtain the
// job object (hJob above) and free it; otherwise
// we will have memory leaks.

// Unregister the event handler when it is no longer needed.
PrlSrv UnregEventHandler (hServer, OurCallbackFunction, &rd);

Calling Asynchronous Functions Synchronously

It is possible to call an asynchronous function synchronously by using the Pr1Job Wait function.
The function takes two parameters: a PHT JOB handle and a timeout value in milliseconds. Once
you call the function, the main thread will be suspended and the function will wait for the
asynchronous job to complete. The function will return when the job is completed or when timeout
value is reached, whichever comes first. The following code snippet illustrates how to call an
asynchronous function PrlServer Login synchronously:

// Log in (PrlSrv Login is asynchronous) .
PRL HANDLE hJob = PrlSrv Login (

hServer,

szHostnameOrIpAddress,

szUsername,

szPassword,

0,

0,

0,

PSL LOW SECURITY) ;

// Wait for a maximum of 10 seconds for
// asynchronous function PrlSrv_Login to complete.
ret = PrlJob Wait (hJob, 10000);
if (PRL_FAILED (ret))
{
fprintf (stderr, "PrlJob Wait for PrlSrv Login returned with error: %$s\n",
prl result to string(ret));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
return -1;

}

// Analyse the result of the PrlServer Login call.
PRL RESULT nJobResult;
ret = PrlJob GetRetCode (hJob, &nJobResult);
if (PRL_FAILED(nJobReSult))
{
PrlHandle Free (hJob);
PrlHandle Free (hServer);
printf ("Login job returned with error: %$s\n",
prl_result_to_string(nJobResult));
return -1;
}
else
{
printf ("login successfully performed\n") ;

}

24

Parallels C APl Concepts

Strings as Return Values

Sting values in the Parallels C API are received by passing a char pointer to a function which
populates it with data. It is the responsibility of the caller to allocate the memory required to receive
the value, and to free it when it is no longer needed. Since in most cases we don't know the string
size in advance, we have to either allocate a chunk of memory large enough for any possible value
or to determine the exact required size. To determine the required buffer size, the following two
approaches can be used:

1 Calling the same function twice: first, to obtain the required buffer size, and second, to receive
the actual string value. To get the required buffer size, call the function passing a null pointer as
a value of the output parameter, and pass O (zero) as a value of the variable that is used to
specify the buffer size. The function will calculate the required size and will populate the variable
with the correct value, which you can use to initialize a variable that will receive the string. You
can then call the function again to get the actual string value.

2 |tis also possible to use a static buffer. If the length of the buffer is large enough, you will simply
receive the result. If the length is too small, a function will fail with the
PRL ERR BUFFER_OVERRUN error but it will populate the "buffer_size" variable with the
required size value. You can then allocate the memory using the received value and call the
function again to get the results.

Consider the following function:

PRL RESULT PrlvmCfg GetName (

PRL HANDLE hVmCfg,

PRL STR sVmName,

PRL UINT32 PTR pnVmNameBufLength
);
The Pr1vmCfg GetName function above is a typical Parallels API function that returns a string
value (in this case, the name of a virtual machine). The hvmC fg parameter is a handle to an object
containing the virtual machine configuration information. The svmName parameter is a char
pointer. It is used as output that receives the virtual machine name. The variable must be initialized
on the program side with enough memory allocated for the expected string. The size of the buffer
must be specified using the pnvmNameBufLength variable.

The following example demonstrates how to call the function using the first approach:

PRL RESULT ret;
PRL UINT32 nBufSize = 0;

// Get the required buffer size.
ret = PrlvmCfg GetName (hvmCfg, 0, &nBufSize);

// Allocate the memory.
PRL STR pBuf = (PRL STR)malloc (sizeof (PRL CHAR) * nBufSize);

// Get the virtual machine name.
ret = PrlvmCfg GetName (hVvmCfg, pBuf, &nBufSize);

printf ("VM name: %$s\n", pBuf);

25

Parallels C APl Concepts

// Deallocate the memory.
free (pBuf) ;

The following example uses the second approach. To test the buffer-overrun scenario, set the
sVmName array size to some small number.

#define MY STR BUF SIZE 1024

PRL RESULT ret;
char sVmName [MY STR BUF SIZE];
PRL UINT32 nBufSize = MY STR BUF SIZE;

// Get the virtual machine name.
ret = PrlvmCfg GetName (hVmCfg, sVmName, &nBufSize);

// Check for errors.
if (PRL_SUCCEEDED(ret))
{

// Everything's OK, print the machine name.
printf ("VM name: %$s\n", sVmName) ;

}
else 1f (ret == PRL ERR BUFFER OVERRUN)

{
// The sVmName array size is too small.
// Get the required size, allocate the memory,
// and try getting the VM name again.

PRL,_UINT32 nSize = 0;
PRL_STR pBuf;

// Get the required buffer size.
ret = PrlvmCfg GetName (hVmCfg, 0, &nSize);

// Allocate the memory.
pBuf = (PRL STR)malloc(sizeof (PRL _CHAR) * nSize);

// Get the virtual machine name.
ret = PrlvmCfg GetName (hVvmCfg, pBuf, &nSize);

printf ("VM name: %s\n", pBuf);

// Dallocate the memory.
free (pBuf) ;

Error Handling

Synchronous Functions

All synchronous Parallels C API functions return PRL_RESULT, which is an integer indicating
success or failure of the operation.

26

Parallels C APl Concepts

Error Codes for Asynchronous Functions

All asynchronous functions return PRL_HANDLE. The error code (return value) in this case can be
extracted with Pr1Job_ GetRetCode after the asynchronous job has finished.

Analyzing Return Values

Parallels C API provides the following macros to work with error codes:

PRL_FATLED Returns True if the return value indicates failure, or False if the
return value indicates success.

PRL_SUCCEEDED Returns True if the return value indicates success, or False if
the return value indicates failure.

prl_result to_string Returns a string representation of the error code.

The following code snippet attempts to create a directory on the host and analyzes the return value
(error code) of asynchronous function Pr1Srv CreateDir.

// Attempt to create directory /tmp/TestDir on the host.
char *szRemoteDir = "/tmp/TestDir";
hJob = PrlSrv FsCreateDir (hServer, szRemoteDir) ;

// Wait for a maximum of 5 seconds for asynchronous
// function PrlSrv FsCreateDir to complete.
PRL RESULT resWaitForCreateDir = PrlJob Wait (hJob, 5000);
if (PRL_FAILED (resWaitForCreateDir))
{
fprintf (stderr, "PrlJob Wait for PrlSvr FsCreateDir failed with error: %$s\n",
prl result to string(resWaitForCreateDir));
PrlHandle Free (hJob) ;
return -1;

}

// Extract the asynchronous function return code.

PrlJob GetRetCode (hJob, &nJobResult) ;

if (PRL_FAILED (nJobResult))

{
fprintf (stderr, "Error creating directory %s. Error returned: %s\n",

szRemoteDir, prl result to string(nJobResult));

PrlHandle Free (hJob) ;
return -1;

}

PrlHandle Free(hJob);
printf ("Remote directory %s was successfully created.\n", szRemoteDir);

27

Parallels C APl Concepts

Descriptive Error Strings

Descriptive error messages can sometimes be obtained using the Pr1Job GetError function.
This function will return a handle to an object of type PHT EVENT. In cases where

PrlJob GetError is unable to return error information, Pr1Api GetResultDescription
can be used. Although it is possible to avoid using Pr1Job GetError and use

PrlJob GetResultDescription instead, it is recommended to first use Pr1Job GetError,
and if this doesn't return additional descriptive error information then use

PrlApi GetResultDescription. The reason is that sometimes errors contain dynamic
parameters. The following example demonstrates how to obtain descriptive error information:

PrlJob GetRetCode (hJob, &nJobResult) ;

PRL CHAR szErrBuff[1024];

PRL UINT32 nErrBuffSize = sizeof (szErrBuff);

PRL HANDLE hError = PRL INVALID HANDLE;

PRL RESULT ret = PrlJob GetError (hJob, &hError);

// Check if additional error information is available.
if (PRL_SUCCEEDED (ret)) // Additional error information is available.
{
// Additional error information is available.
ret = PrlEvent GetErrString(hError, PRL FALSE, PRL FALSE, szErrBuff,
snErrBuffSize);
if (PRL_FAILED (ret))
{
printf ("PrlEvent GetErrString returned error: %$.8x $s\n",
ret, prl result to string(ret)):;
}
else
{
// Extra error information is available, display it.
printf ("Error returned: %.8x %$s\n", nJobResult,
prl result to string(nJobResult));
printf ("Descriptive error: %$s\n", szErrBuff);
}
}
else
{
// No additional error information available, so use
PrlApi GetResultDescription.
ret = PrlApi GetResultDescription (nJobResult, PRL FALSE, PRL FALSE, szErrBuff,
snErrBuffSize);
if (PRLiFAILED(ret))
{
printf ("PrlApi GetResultDescription returned error: %s\n",
prl result to string(ret));
}
else
{
printf ("Error returned: %.8x %$s\n", nJobResult,
prl result to string(nJobResult));
printf ("Descriptive error: %$s\n", szErrBuff);
}
}
// Free handles, return the error code.
PrlHandle Free (hJob);

28

Parallels C API Concepts

29

CHAPTER 3

Parallels C API by Example

In This Chapter

Obtaining Server Handle and LOGGING IN......cuvviiiiiiiiiiiiiiicee e 31
HOSE OPEratioNSovviieiiiie i 35
Virtual Maching OpPerationS.........cuviviiiiiii 55
BEVENTS oo 102
PerformancCe STatiStICS........vviiiiiiiee e 112

ENCryption PlUG-IN ..oooovii 121

CHAPTER 4

Obtaining Server Handle and Logging In

The following steps are required in any program using the Parallels C API:

1
2

Load the Parallels Virtualization SDK library using the SdkWrap Load function.

Initialize the APl using the Pr1Api InitEx function. The APl must be initialized properly for
the given Parallels product, such as Parallels Server, Parallels Desktop. The initialization mode is
determined by the value of the nAppMode parameter passed to the Pr1Api InitEx

function. The value must be one of the enumerators from the PRL_APPLICATION MODE
enumeration.

Create a server handle using the Pr1Srv Create function.

Call Pr1Srv_LoginLocal or PrlSrv_Login to login to the Parallels Virtualization Service
(or simply Parallels Service). Parallels Service is a combination of processes running on the host
machine that comprise the Parallels virtualization product. The first function is used when the
program and the target Parallels Service are running on the same host. The second function
(Prlsrv_Login)is used to log in to a remote Parallels Service. Please note that remote login
is supported in Parallels Server-based virtualization products only.

If the above steps are executed without errors, the handle created in step 3 will reference a Server
object (a handle of type PHT SERVER) identifying the Parallels Service. A handle to a valid Server
object is required to access most of the functionality within the Parallels C API. The
PrlSrv_LoginLocal function (step 4) establishes a connection with a specified Parallels Service
and performs a login operation using the specified credentials. The function operates on the Server
object created in step 3. Upon successful login, the object can be used to perform other
operations.

To end the session with the Parallels Service, the following steps must be performed before exiting
the application:

A O N =

Call pr1Srv_Logoff to log off the Parallels Service.
Free the Server handle using Pr1Handle Free.
Call pr1Api Deinit to de-initialize the library.

Call sdkWrap Unload to unload the API.

Example

The following sample functions demonstrates how to perform the steps described above.

Intializes the SDK library and

logs in to the local Parallels Service.

Obtains a handle of type PHT SERVER identifying
the Parallels Service.

Parallels C API by Example

PRL RESULT LoginLocal(PRLiHANDLE &hServer)

{

32

// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle
PRL HANDLE hJobResult = PRL INVALID HANDLE; // job result

// Variables for return codes.
PRL RESULT err = PRL ERR UNINITIALIZED;
PRLiRESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Use the correct dynamic library depending on the platform.
#ifdef WIN_

#define SDK LIB NAME "prl sdk.dll"

#elif defined(LIN)

#define SDK LIB NAME "libprl sdk.so"

#elif defined(MAC)

#define SDK LIB NAME "libprl sdk.dylib"

#endif

// Load SDK library.
if (PRL_FAILED (SdkWrap Load(SDK LIB NAME)) &&
PRL_FATLED (SdkWrap Load("./" SDK_LIB_NAME)))

fprintf(stderr, "Failed to load " SDK LIB NAME "\n");
return -1;

// Initialize the API. In this example, we are initializing the

// API for Parallels Desktop.

// To initialize in the Parallels Desktop mode, pass PAM DESKTOP

// as the second parameter.

// To initialize for Parallels Server, pass PAM SERVER.

// See the PRL APPLICATION MODE enumeration for all possible options.

err = PrlApi InitEx(PARALLELS API VER, PAM WORKSTATION, 0, O0);
if (PRL_FAILED (err))

fprintf (stderr, "PrlApi InitEx returned with error: %s.\n",
prl result to string(err));

PrlApi Deinit();

SdkWrap Unload() ;

return -1;

}

// Create a server handle (PHT SERVER) .
err = PrlSrv Create (&hServer);
if (PRL_FAILED (err))
{
fprintf (stderr, "PrlSvr Create failed, error: 3%s",
prl result to string(err));
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Log in (asynchronous call).
hJob = PrlSrv_LoginLocal(hServer, NULL, NULL, PSL NORMAL SECURITY) ;

// Wait for a maximum of 10 seconds for
// the job to complete.

Parallels C API by Example

err = PrlJob Wait (hJob, 1000) ;
if (PRL_FAILED (err))

{
fprintf (stderr,

"PrlJob Wait for PrlSrv Login returned with error: %$s\n",

prl_result_to_string(err));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Analyze the result of PrlSrv_Login.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// First, check PrlJob GetRetCode success/failure.
if (PRL_FAILED (err))
{

fprintf (stderr, "PrlJob GetRetCode returned with error:

prl result to string(err));
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Now check the Login operation success/failure.
if (PRL_FAILED (nJobReturnCode))
{
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
printf ("Login job returned with error: %$s\n",
prl_result_to_string(nJobReturnCode));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;
}
else
{
printf ("Login was successful.\n");

}

return 0;

// Log off the Parallels Service and
// deinitializes the SDK library.

//

PRL RESULT LogOff (PRL HANDLE &hServer)

{

PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL RESULT err = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

%s\n",

33

Parallels C API by Example

34

// Log off.

hJob = PrlSrv Logoff (hServer);

err = PrlJob Wait (hJob, 1000);

if (PRL_FAILED (err))

{
fprintf (stderr, "PrlJob Wait for PrlSrv Logoff returned error: %s\n",

prl result to string(err));

PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit () ;
SdkWrap Unload() ;
return -1;

}

// Get the Logoff operation return code.
err = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

// Check the PrlJob GetRetCode success/failure.
if (PRL_FAILED (err))
{

fprintf (stderr, "PrlJob GetRetCode failed for PrlSrv Logoff with error:

prl result to string(err));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Report success or failure of PrlSrv Logoff.
if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "PrlSrv Logoff failed with error: %s\n",
prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;
}
else
{
printf ("Logoff was successful.\n");

}

// Free handles that are no longer required.
PrlHandle Free (hJob);
PrlHandle Free (hServer);

// De—-initialize the Parallels API, and unload the SDK.
PrlApi Deinit();
SdkWrap Unload() ;

return 0;

$s\n",

CHAPTER 5

Host Operations

This chapter describes the common tasks that can be performed on the host.

In This Chapter

Retrieving Host Configuration Information.............cccv 35
Managing Parallels Service PreferenCes. ... 37
Searching for Parallels SEIVEISiiiiiiiiii e 41
Managing Parallels SENVICE USEIScuuuiiiiiiieiiiiiiiit et 43
Managing Files INn The HOSE OS ...ovvvviiiiiiii e 48
AV =T = To | aTe I N Tt = g Tt = < PR 51
Obtaining a Problem REPOIuuuuiiiiiiiiiiiiiiiiiiiiieir e 53

Retrieving Host Configuration Information

The Parallels C API provides a set of functions to retrieve detailed information about a host
machine. This includes:

« CPU(s) - number of, mode, model, speed.
« Devices - disk drives, network interfaces, ports, sound.
« Operating system - type, version, etc.

+ Memory (RAM) size.

This information can be used when modifying Parallels Service preferences, setting up devices
inside virtual machines, or whenever you need to obtain information about the resources available
on the physical host.

To retrieve this information, first obtain a handle of type PHT SERVER_CONFIG and then use its
functions to get information about a particular resource. The following sample function
demonstrates how it is accomplished. The function accepts the hServer parameter which is a
server handle. For the example on how to obtain a server handle, see Obtaining Server Handle
and Logging In (p. 31).

PRL RESULT GetHostConfig (PRL HANDLE hServer)

{
PRL HANDLE hJob = PRL_ INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hHostConfig = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// An asynchronous call that obtains a handle
// of type PHT SERVER CONFIG.

Parallels C API by Example

hJob = PrlSrv GetSrvConfig (hServer) ;

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Analyze the result of PrlSrv GetSrvConfig.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;

if (PRL_FAILED(ret))

{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}

// Get the job return code.

if (PRL_FAILED (nJobReturnCode))

{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult)
PrlHandle Free (hJob) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Get the PHT SERVER CONFIG handle.

’

ret = PrlResult GetParam(hJobResult, &hHostConfig);

PrlHandle Free (hJobResult) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Obtain the individual configuration setting.

printf ("\nHost Configuration Information:

// Get CPU count.
PRL_UINT32 nCPUcount = 0;
ret = PrlSrvCfg GetCpuCount (hHostConfig,
if (PRL_FAILED (ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hHostConfig);
return -1;

}

printf ("CPUs: %d\n", nCPUcount) ;

36

\n\n") ;

&nCPUcount) ;

Parallels C API by Example

// Get host OS type.
PRL_HOST OS_TYPE nHostOsType;
ret = PrlSrvCfg GetHostOsType (hHostConfig,

// 1f (PRL FAILED (ret))

printf ("OS Type: %d\n", nHostOsType) ;
// Get host RAM size.
PRL UINT32 nHostRamSize;

ret = PrlSrvCfg GetHostRamSize (hHostConfig,
// if (PRL _FAILED (ret))

printf ("RAM: %d MB\n", nHostRamSize) ;
// Get the network adapter info.
// First get the net adapter count.

PRL UINT32 nNetAdaptersCount = 0;

{ handle the error...

{ handle the error...

&nHostOsType) ;

}

&nHostRamSize) ;

}

ret = PrlSrvCfg GetNetAdaptersCount (hHostConfig,
&nNetAdaptersCount) ;
// 1if (PRL_FAILED(ret)) { handle the error... }

// Now iterate through the list and get the info

// about each adapter.
printf ("\n");

for (PRL UINT32 i =
{

0;

printf ("Net Adapter %d\n", i+1);

i < nNetAdaptersCount;

++1)

// Obtains a handle of type PHT HW NET ADAPTER.

PRL HANDLE phDevice =
ret =
virtual)

// Get adapter type (physical,

PRL INVALID HANDLE;
PrlsrvCfg GetNetAdapter (hHostConfig,

i, &phDevice) ;

PRL_HW INFO NET ADAPTER TYPE nNetAdapterType;

ret =

PrlsrvCfgNet GetNetAdapterType (phDevice,

&nNetAdapterType) ;

printf ("Type: %d\n", nNetAdapterType) ;
// Get system adapter index.

PRL UINT32 nIndex = 0;

ret =
printf ("Index:

%d\n\n", nIndex);

}
PrlHandle Free (hHostConfig);

return 0;

PrlsrvCfgNet GetSysIndex (phDevice,

&nIndex) ;

Managing Parallels Service Preferences

Parallels Service preferences is a set of parameters that control its default behaviour. Some of the
important parameters are:

Memory limits for the Parallels Service itself.

Memory limits and recommended values for virtual machines.

37

Parallels C API by Example

Virtual network adapter information.

Default virtual machine directory (the directory where all new virtual machines are created by
default).

Communication security level.

Parallels Service preferences are managed using the PHT DISP CONFIG handle which is obtained
using the Pr1srv GetCommonPrefs function. For the complete list of functions provided by the
PHT DISP CONFIG object, see the Parallels C APl Reference guide.

The following sample function demonstrates how to obtain a handle of type PHT DISP CONFIG
and how to use its functions to retrieve and modify some of the Parallels Service preferences. The
function accepts the hserver parameter which is a server handle. For the example on how to
obtain a server handle, see Obtaining Server Handle and Logging In (p. 31).

PRL RESULT GetSetServicePrefs (PRL_ HANDLE hServer)

{

38

// Variables for handles.

PRL HANDLE hJob = PRL INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hDispConfig = PRL INVALID HANDLE;

// Variables for return codes.
PRL RESULT ret = PRL ERR UNINITIALIZED;
PRLiRESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// An asynchronous call that obtains a handle
// of type PHT DISP CONFIG.
hJob = PrlSrv GetCommonPrefs (hServer) ;

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}

// Analyze the result of PrlSrv GetCommonPrefs.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Get the job return code.
if (PRL FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob) ;

Parallels C API by Example

if (PRLiFAILED(ret))

{
// Handle the error...
return -1;

}

// Get the PHT DISP CONFIG handle.
ret = PrlResult GetParam(hJobResult, &hDispConfig);
PrlHandle Free (hJobResult) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Get the default virtual machine directory.

char sDefaultDir[1024];

PRL UINT32 nBufSize = sizeof (sDefaultDir);

ret = PrlDispCfg GetDefaultVmDir (hDispConfig,
sDefaultDir, &nBufSize):;

if (PRL_FAILED(ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hDispConfig) ;
return -1;

}

printf ("Parallels Service Preferences \n\n");
printf ("Default VM Directory: %s\n", sDefaultDir) ;

// Get the recommended virtual machine memory size.
PRL UINT32 nMemSize = 0;
ret = PrlDispCfg GetRecommendMaxVmMem (hDispConfig, &nMemSize) ;
if (PRL_FAILED (ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hDispConfig) ;
return -1;

}
printf ("Recommended VM memory size: %d\n", nMemSize);

// Modify some of the Parallels Service preferences.
// Begin edit.
hJob = PrlSrv CommonPrefsBeginEdit (hServer) ;
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
PrlHandle Free (hDispConfig) ;
return -1;

}

// Get the "begin edit" operation success code.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL FAILED (ret))

39

Parallels C API by Example

40

fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
PrlHandle Free (hDispConfig) ;
return -1;
}
if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "Error: %s\n",
prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob);
PrlHandle Free (hDispConfig) ;
return -1;

}
PrlHandle Free (hJob) ;

// Modify the recommended virtual machine memory size.
nMemSize = 512;

ret = PrlDispCfg SetRecommendMaxVmMem (hDispConfig, nMemSize) ;

if (PRL_FAILED(ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hDispConfig) ;
return -1;

}

// Commit the changes.
hJob = PrlSrv CommonPrefsCommit (hServer, hDispConfig) ;
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob);
PrlHandle Free (hDispConfig) ;
return -1;

ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED(ret))
{
fprintf (stderr, "Error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob);
PrlHandle Free (hDispConfig) ;
return -1;
}
if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "Error: %s\n",
prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob);
PrlHandle Free (hDispConfig);
return -1;

}

printf ("The recommended VM memory size changed to: $d\n"

14

nMemSize) ;

Parallels C API by Example

PrlHandle Free (hDispConfig) ;

return 0;

Searching for Parallels Servers
This topic applies to Parallels Server only.

If you have multiple Parallels Servers running on your network and don't know their exact locations
and/or connection parameters, you can search for them using the
PrlSrv_LookupParallelsServers function. The function returns the information as a list of
handles of type PHT SERVER_INFO, each containing the information about an individual Parallels
Server. The information includes host name, port number, version of the OS that a host is running,
Parallels Server version number, and the global ID (UUID). This information can then be used to
establish a connection with the Parallels Server of interest (you will have to know the correct user
name and password in addition to the returned parameters).

The Prl1Srv_LookupParallelsServers function can be executed asynchronously using the
callback functionality or it can be used synchronously. To use the function asynchronously, you
must implement a callback function first. The callback function pointer must then be passed to the
Prlsrv_LookupParallelsServers as a parameter. During the search operation, the callback
function will be called for every Parallels Server found and a handle of type PHT SERVER INFO
containing the Parallels Server information will be passed to it. Searching an entire local area
network can take a significant time, so using a callback is the recommended approach.

Touse the Pr1Srv_LookupParallelsServers function synchronously, pass a null pointer
instead of the callback function pointer, and use Pr1Job Wait to wait for the job to complete.
The returned job object will contain a list of PHT SERVER INFO objects.

Note: The Pr1Srv LookupParallelsServers function can be executed without being logged in to
a Parallels Service. For example, if you are writing an application with a user interface, you can search the
network for available Parallels Servers and present the list to the user so that he/she can select a server
to connect to.

The following sample functions demonstrate how to search local network for Parallels Servers. The
first sample function calls the Pr1Srv_LookupParallelsServers function synchronously. The
second function takes an asynchronous approach.

PRL RESULT SearchServersSynch ()
{
// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle
PRL HANDLE hJobResult = PRL INVALID HANDLE; // job result
PRL_HANDLE hHostConfig = PRL_INVALID HANDLE; // PHT SERVER CONFIG

// Variables for return codes.
PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL_RESULT nJobReturnCode = PRL_ERR_UNINITIALIZED;

// Search for Parallels servers.

41

Parallels C API by Example

42

hJob = PrlSrv LookupParallelsServers (

1000, // timeout
NULL, // callback function (not used)
NULL // user object pointer (not used)

)

// Wait for the job to complete.

ret = PrlJob Wait (hJob, 10000);

if (PRLiFAILED(ret))

{
// Handle the error...
PrlHandle Free (hJob);
fprintf (stderr, "Error: %s. \n",

prl result to string(ret));

return -1;

}

// Rnalyze the result of PrlSrv LookupParallelsServers.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Get the job return code.
if (PRL FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Get the number of objects returned.
PRLiUINT32 nCount = 0;
PrlResult GetParamsCount (hJobResult, &nCount);

// Iterate and a obtain handle to each object.
for (PRLiUINT32 i = 0; i < nCount ; ++i)
{
PRL HANDLE hParam = PRL INVALID HANDLE;
PrlResult GetParamByIndex (hJobResult, i, &hParam);

PRL CHAR sBuf[10247];
PRL UINT32 nBufSize = sizeof (sBuf);

// Get the host name.
ret = PrlSrvInfo GetHostName (hParam, sBuf, &nBufSize);

if (PRL SUCCEEDED (ret))
{

printf ("Found Parallels Server: %$s\n", sBuf);

Parallels C API by Example

}

else

{
fprintf (stderr, "Error: %$s \n",
prl result to string(ret));

}

PrlHandle Free (hParam);

}

In the following example, the Pr1Srv LookupParallelsServers is called asynchronously. In
order to that, we first have to implement a callback function (we'll call it ourCallback):

static PRL RESULT ourCallback (PRL HANDLE hEvent, PRL VOID PTR pUserData)
{

printf ("%s: ", pUserData) ;

// Get the host name.

PRL UINT32 nBufSize = 1024;

PRL CHAR sBuf [nBufSize];

PrlSrvInfo GetHostName (hEvent, sBuf, &nBufSize);

// Get the other server properties and process them here, if needed...

// The handle must be freed.
PrlHandle Free (hEvent);
return rc;

}
The Pr1srv_ LookupParallelsServers function can now be called as follows:

hJob = PrlSrv LookupParallelsServers (
1000,
gourCallback,
(PRL_VOID PTR) ("callback"));

Managing Parallels Service Users
This topic applies to Parallels Server only.

Parallels Service doesn't have its own user database. It performs user authentication against the
host operating system user database. However, it has a user registry where the user information
that relates to Parallels Service operations is kept. The information includes user UUID (Universally
Unigue ID), user name, the name and path of the virtual machine directory for the user, and two
flags indicating if a user is allowed to modify server preferences and use management console
application. A new user record is created in the registry for every user as soon as he/she logs in to
a Parallels Service for the very first time.

There are two API handles that are used to obtain information about Parallels Service users and to
modify some of the user profile parameters. These handles are PHT USER INFO and

PHT USER PROFILE. Both handles are containers that contain information about a user. The
difference between the two is PHT USER_PROFILE is used to obtain information about currently
logged in user while PHT USER_INFO is used to obtain information about a specified user. There
are also some differences in the type of the information provided.

43

Parallels C API by Example

Getting the information about the currently logged in user

The information about the currently logged in user can be retrieved using functions of the

PHT USER PROFILE handle. The following sample demonstrates how to obtain the handle and
how to use its functions to retrieve user information. The sample also shows how to set up a
default virtual machine directory for the user. Parallels Service automatically assigns a default virtual
machine directory (the directory where new virtual machines are created) for every new user. If
needed, a user can specify a different directory for his/her virtual machines. At the time of this
writing, this is the only property of the Parallels Service user profile that can be modified. Every user
profile modification must begin with the Pr1srv UserProfileBeginEdit function call and end
with the Pr1Srv UserProfileCommit call. These two functions are used to prevent collisions
with other clients trying to modify the same user profile at the same time.

PRL RESULT UserProfileSample (const PRL HANDLE &hServer)
{

PRL HANDLE hJob = PRL INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL HANDLE hUserProfile = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Get user info from the server.
hJob = PrlSrv GetUserProfile (hServer) ;

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Rnalyze the result of PrlSrv GetUserProfile.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

44

Parallels C API by Example

// Get the user profile handle (PHT USER PROFILE) from
// the result.
ret = PrlResult GetParam(hJobResult, &hUserProfile) ;
if (PRLiFAILED(ret))
{

// Handle the error...

PrlHandle Free (hJobResult) ;

return -1;

}

// Free job result handle.
PrlHandle Free (hJobResult) ;

// See if the user is allowed to modify

// the Parallels server preferences.

PRL BOOL bCanChange = PRL FALSE;

ret = PrlUsrCfg CanChangeSrvSets (hUserProfile, &bCanChange);
printf ("Can modify server preferences: %d\n", bCanChange) ;

// See if the user is allowed to use management

// console application.

ret = PrlUsrCfg CanUseMngConsole (hUserProfile, &bCanChange) ;
printf ("Can use management console: %d\n", bCanChange) ;

// Get the default virtual machine folder

// for the user.

PRL CHAR sBufFolder([1024];

PRL UINT32 nBufSize = sizeof (sBufFolder) ;

ret = PrlUsrCfg GetDefaultVmFolder (hUserProfile, sBufFolder, &nBufSize);

// If sBufFolder contains an empty string then this user

// does not have a default virtual machine folder and is

// currently using the default virtual machine folder set
// for this Parallels server. If this is the case, retrieve
// that folder.

if (sBufFolder == "")

ret = PrlUsrCfg GetVmDirUuid (hUserProfile, sBufFolder, &nBufSize);
}

printf ("VM folder: %s\n", sBufFolder);

// Modify the name and location of the virtual
// machine folder.
// This operation must begin with the
// PrlSrv UserProfileBeginEdit that marks the
// beginning of the operation. This is done to
// prevent collisions with other sessions trying to
// modify the same profile at the same time.
hJob = PrlSrv UserProfileBeginEdit (hServer);
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Analyze the result of PrlSrv UserProfileBeginEdit.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
PrlHandle Free (hJob);

Parallels C API by Example

if (PRLiFAILED(ret))
{
// Handle the error...
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
return -1;
}
// Set the new virtual machine folder.
// The folder must already exist on the server.

ret = PrlUsrCfg SetDefaultVmFolder (hUserProfile, "/Users/Shared/Parallels/JDoe");

if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hUserProfile);
return -1;
}
// Finally, commit the changes to the server.
hJob = PrlSrv UserProfileCommit (hServer, hUserProfile);
ret = PrlJob Wait (hJob, 1000);
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Analyze the result of PrlSrv UserProfileCommit.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
PrlHandle Free (hJob) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
return -1;

}

PrlHandle Free (hUserProfile);

Getting the information about a particular user

The information about a particular Parallels Service user can be obtained using the functions of the

PHT USER_INFO handle. The handle can be obtain using one of the following functions:

Prl1Srv GetUserInfo or Pr1Srv GetUserInfolList. The first function takes the user UUID

as an input parameter and returns a single handle of type PHT USER_INFO containing the user
information. The second function returns information about all users that exist in the Parallels
Service user registry. The information is returned as a list of handles of type PHT USER INFO.

46

Parallels C API by Example

The following sample uses the Pr1Srv GetUserInfolList function to obtain information about
all users in the Parallels Service user registry. It then iterates through the returned list of
PHT USER_INFO handles and retrieves information about individual users.

PRL RESULT UserInfoSample (const PRL HANDLE &hServer)
{

PRL HANDLE hJob = PRL INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL HANDLE hUserInfo = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Get user info from the Parallels Service.
hJob = PrlSrv GetUserInfolist (hServer);

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRLiFAILED(ret))
{
// Handle the error...
return -1;

}

// Analyze the result of PrlSrv GetUserInfolist.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Get parameter count (the number of PHT USER INFO

// handles in the result set).

PRL UINT32 nParamCount = 0;

ret = PrlResult GetParamsCount (hJobResult, &nParamCount) ;

// Iterate through the list obtaining
// a handle of type PHT USER INFO for
// each user.
for (PRL UINT32 i = 0; i < nParamCount; ++i)
{
ret = PrlResult GetParamByIndex (hJobResult, i, &hUserInfo);

47

Parallels C API by Example

if (PRLiFAILED(ret))

{
// Handle the error...
return -1;

}

// Get user UUID.

PRL CHAR sBufID[1024];

PRL UINT32 nBufSize = sizeof (sBufID);

ret = PrlUsrInfo GetUuid(hUserInfo, sBufID, &nBufSize);
printf ("UUID: %$s\n", sBuflID);

// Get user name.

PRL CHAR sBufName[1024];

nBufSize = sizeof (sBufName) ;
PrlUsrInfo GetName (hUserInfo, sBufName, &nBufSize);
printf ("Name: %$s\n", sBufName) ;

// Get default virtual machine folder

// for the user.

PRL CHAR sBufFolder[1024];

nBufSize = sizeof (sBufFolder);

PrlUsrInfo GetDefaultVmFolder (hUserInfo, sBufFolder, &nBufSize) ;
printf ("VM folder: %$s\n", sBufFolder);

// See if the user is allowed to modify

// the Parallels server preferences.

PRL BOOL bCanChange = PRL FALSE;

PrlUsrInfo CanChangeSrvSets (hUserInfo, &bCanChange);

printf ("Can modify server preferences: %d\n\n", bCanChange) ;
PrlHandle Free (hUserInfo);

}
PrlHandle Free (hJobResult) ;

Managing Files In The Host OS

The following file management operations can be performed using the Parallels C APl on the host
machine:

« Obtaining a directory listing.

« Creating directories.

« Automatically generate unique names for new file system entries.
« Rename file system entries.

¢ Delete file system entries.

The file management functionality can be accessed through the PHT SERVER handle. The file
management functions are prefixed with "PriSrv_Fs".

48

Parallels C API by Example

Obtaining the host OS directory listing

The directory listing is obtained using the Pr1Srv_ FsGetDirEntries function. The function
returns a handle of type PHT REMOTE FILESYSTEM INFO containing the information about the
specified file system entry and its immediate child entries (if any). The child entries are returned as a
list of handles of type PHT REMOTE FILESYSTEM ENTRY which is included in the

PHT REMOTE FILESYSTEM INFO object. The sample function below demonstrates how to
obtain a listing for the specified directory. On initial call, the function obtains a list of child entries
(files and sub-directories) for the specified directory and is then called recursively for each file
system entry returned. On completion, the entire directory tree will be displayed on the screen.

// Obtains the entire directory tree in the host 0S
// starting at the specified path.
// The "levels" parameter specifies how many levels should the
// function traverse down the directory tree.
PRL RESULT GetHostDirList (PRL HANDLE hServer, PRL CONST STR path, int levels)
{
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hParentDirectory = PRL INVALID HANDLE;
PRL HANDLE hChildElement = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Get directory list from the host.

// The second parameter specifies the absolute
// path for which to get the directory listing.
hJob = PrlSrv FsGetDirEntries (hServer, path);

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRLiFAILED(ret))
{
// Handle the error...
return -1;

}

// Rnalyze the result of PrlSrv FsGetDirEntries.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}
// Get job result.

ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob);

49

Parallels C API by Example

50

if (PRLiFAILED(ret))

{
// Handle the error...
return -1;

}

// Get a handle to the parent directory.
// This is the directory that we specified in the
// PrlSrv FsGetDirEntries call above.

ret = PrlResult GetParam(hJobResult, &hParentDirectory);

PrlHandle Free (hJobResult) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Get parameter count (the number of child entries).
PRL UINT32 nParamCount = 0;
ret = PrlFsInfo GetChildEntriesCount (hParentDirectory,
if (PRL_FAILED (ret))
{

// Handle the error...

PrlHandle Free (hJob) ;

return -1;

}

// Iterate through the list obtaining
// a handle of type PHT REMOTE FILESYSTEM ENTRY
// for each child element of the parent directory.
for (PRL UINT32 i = 0; i < nParamCount; ++i)
{
// Get a handle to the child element.
ret = PrlFsInfo GetChildEntry (hParentDirectory, i,
if (PRL_FAILED (ret))
{
// Handle the error...
continue;

}

// Get the filesystem element name.
PRL CHAR sBuf[1024];
PRL UINT32 nBufSize = sizeof (sBuf);

&nParamCount) ;

&hChildElement) ;

ret = PrlFsEntry GetAbsolutePath (hChildElement, sBuf, &nBufSize);

if (PRL_FAILED(ret))

{
// Handle the error...
PrlHandle Free (hChildElement) ;
continue;

}

printf ("$s\n", sBuf);
PrlHandle Free (hChildElement) ;

// Recursive call. Obtains directory listing for
// the entry returned in this iteration.
if (levels > 0 || levels <= -1)
{
int count = levels - 1;
GetHostDirList (hServer, sBuf, count);

Parallels C API by Example

}
PrlHandle_Free(hParentDirectory);
PrlHandle Free (hJob);

return PRL ERR SUCCESS;

Managing Licenses

The Parallels license information can be retrieved using the Pr1Srv GetLicenseInfo function.
The function returns a handle of type PHT LICENSE containing the license details. The handle
provides a set of functions to retrieve the details. To install or update a license, use the

Prlsrv UpdateLicense function.

The following sample function demonstrates how to obtain license information and how to install a

new license.

PRL RESULT UpdateLicenseSample(PRLiHANDLE hServer)
{

PRL HANDLE hJob = PRL INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL HANDLE hLicense = PRL INVALID HANDLE;

PRL HANDLE hUpdateLicense = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;

PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Get the license info from the Parallels Service.

hJob = PrlSrv_GetLicenseInfo(hServer);
// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Analyze the result of PrlSrv GetUserInfolist.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Get job result.

ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob);

if (PRL_FAILED (ret))

{

51

Parallels C API by Example

52

// Handle the error...
return -1;

}

// Get parameter from job result.
ret = PrlResult GetParam(hJobResult, &hLicense) ;
PrlHandle Free (hJobResult) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Get company name.
PRL CHAR sCompany[1024];
PRL UINT32 nCompanyBufSize = sizeof (sCompany) ;
ret = PrllLic_GetCompanyName (hLicense, sCompany,
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hLicense);
return -1;
}

printf ("Company: %$s\n", sCompany) ;

// Get user name.
PRL CHAR sUser[1024];
PRL UINT32 nUserBufSize = sizeof (sUser);

&nCompanyBufSize) ;

ret = Prllic_GetUserName (hLicense, sUser, &nUserBufSize);

if (PRL_FAILED (ret))

{
// Handle the error...
PrlHandle Free (hLicense);
return -1;

}

printf ("User: %s\n", sUser);

// Get license key.
PRL_CHAR sKey[1024];
PRL UINT32 nKeyBufSize = sizeof (sKey);

ret = PrllLic GetLicenseKey (hLicense, sKey, &nKeyBufSize);

if (PRL_FAILED (ret))

{
// Handle the error...
PrlHandle Free (hLicense);
return -1;

}

printf ("Key: %s\n", sKey);

// See license type.
PRL_BOOL isTrial = PRL TRUE;
ret = PrllLic IsTrial (hLicense, &isTrial);
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hLicense);
return -1;
}

printf ("Trial: %d\n", isTrial):;

PrlHandle Free (hLicense);

Parallels C API by Example

// Update the license info.
// Here, we use the same license information that we
// retrieved earlier. Normally, you would use the
// information that you received from
// your Parallels product distributor.
hUpdatelLicense = PrlSrv Updatelicense (hServer, sKey,
sUser, sCompany) ;
// Wait for the job to complete.
ret = PrlJob Wait (hUpdateLicense, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

PrlHandle Free (hUpdateLicense) ;

Obtaining a Problem Report

If you are experiencing a problem with a virtual machine, you can obtain a problem report from the
Parallels Service. The report can then be sent to the Parallels technical support for evaluation. A
problem report contains technical data about your Parallels product installation, log data, and other
technical details that can be used to determine the source of the problem and to develop a
solution. The following example demonstrates how to obtain the report.

PRL RESULT GetProblemReport (PRL HANDLE hServer)

{

PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Get problem report from the host.
hJob = PrlSrv GetProblemReport (hServer) ;

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Analyze the result of PrlSrv GetProblemReport.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob) ;

53

Parallels C API by Example

54

CHAPTER 6

Virtual Machine Operations

This chapter describes the common tasks that can be performed on virtual machines.

In This Chapter

Obtaining the Virtual Machings LStuuuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeeeee 55
Searching for Virtual Maching BY Nameuuiinee 57
Obtaining Virtual Machine Configuration INformationccccciiiiiiiiiiiieeeenii 59
Determining Virtual Maching Stateevviiiiii e 61
Starting, Stopping, Resetting a Virtual Machingccooooviiiiiiiiens 63
Suspending and Pausing a Virtual Machingcoooiiiiiiiiiiiiiiiiineienenneens 64
Creating a New Virtual MaChINEuuuiiiiii e nennnes 66
Searching for Virtual Machingsooooiiii e eeeeeeneeeeee 69
Adding an Existing Virtual Machine ... 73
Cloning @ Virtual MaCKHINEoiiiiiiiiiie e 75
Deleting a Virtual MacChINEooviiiiiiiii e 7
Modifying Virtual Machine Configurationuuuvvviviiiiiiiiiiiiiiiiieieieeaeaea 79
Managing User ACCESS RIGNTSuuuiiiiiiiiiiii e e 91
Working with Virtual Maching Templates.........ccovvviiiiiiiii e 94

Obtaining the Virtual Machines List

Any virtual machine operation begins with obtaining a handle of type PHT VIRTUAL MACHINE
identifying the virtual machine. Once a handle identifying a virtual machine is obtained, its functions
can be used to perform a full range of virtual machine operations. This sections describes how to
obtain a list of handles, each identifying an individual virtual machines registered with a Parallels
Service. If you would like to search for unregistered virtual machines on the host computer, please
refer to the Searching for Virtual Machines section (p. 69).

The steps that must be performed to obtain the virtual machine list are:

1 Log in to the Parallels Service and obtain a handle of type PHT SERVER. See Obtaining
Server Handle and Logging In (p. 31) for more info and code samples.

2 Callprlsrv_GetvmList. This is an asynchronous function that returns a handle of type
PHT JOB.

3 CallPrlJob GetResults passing the PHT JOB object obtained in step 2. This function
returns a handle of type PHT RESULT containing the virtual machine list.

Free the job handle using Pr1Handle Free asitis no longer needed.

Call PrlResult GetParamsCount to determine the number of virtual machines contained in
the PHT RESULT object.

Parallels C API by Example

6 Callthe PrlResult GetParamByIndex function in aloop passing an index from O to the
total virtual machine count. The function obtains a handle of type PHT VIRTUAL MACHINE
containing information about an individual virtual machine.

7 Use functions of the PHT VIRTUAL MACHINE object to obtain the virtual machine information.
For example, use Pr1vmCfg GetName to obtain the virtual machine name.

8 Free the virtual machine handle using Pr1Handle Free.

9 Free the result handle using Pr1Handle Free.

The following sample function implements the steps described above.

PRL RESULT GetVmList (PRL HANDLE hServer)

{
// Variables for handles.
PRL HANDLE hJob = PRL INVALID HANDLE; // job handle
PRL_HANDLE hJobResult = PRL INVALID HANDLE; // job result

// Variables for return codes.

PRLiRESULT ret = PRL ERR UNINITIALIZED;

PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;
// Get the list of the available virtual machines.
hJob = PrlSrv GetVmList (hServer) ;

// Wait for a maximum of 10 seconds for PrlSrv_ GetVmList.
ret = PrlJob Wait (hJob, 10000);
if (PRL_FAILED (ret))
{
fprintf (stderr,
"PrlJob Wait for PrlSrv GetVmList returned with error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
return ret;

}

// Check the results of PrlSrv GetVmList.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRLiFAILED(ret))
{
fprintf (stderr, "PrlJob GetRetCode returned with error: %$s\n",
prl result to string(ret));
PrlHandle Free (hJob);
return ret;

}

if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "PrlSrv_ GetVmList returned with error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
return ret;

}

// Get the results of PrlSrv GetVmList.
ret = PrlJob GetResult (hJob, &hJobResult);
if (PRL_FAILED (ret))

{

fprintf (stderr, "PrlJob GetResult returned with error: %s\n",

56

Parallels C API by Example

prl result to string(ret));
PrlHandle Free (hJob) ;
return ret;

}

// Handle to the result object is available,
// job handle is no longer needed, so free it.
PrlHandle Free (hJob) ;

// Iterate through the results (list of virtual machines returned) .
PRL UINT32 nParamsCount = 0;
ret = PrlResult GetParamsCount (hJobResult, &nParamsCount) :;

printf ("\nVirtual Machines:\n");

for (PRL UINT32 i = 0; i < nParamsCount; ++i)

{
PRL HANDLE hVm = PRL INVALID HANDLE; // virtual machine handle

// Get a handle to the result at index i.
PrlResult GetParamByIndex (hJobResult, i, &hVm);

// Now that we have a handle of type PHT VIRTUAL MACHINE,
// we can use its functions to retrieve or to modify the
// virtual machine information.

// As an example, we will get the virtual machine name.
char szVmNameReturned[1024];

PRL UINT32 nBufSize = sizeof (szVmNameReturned) ;

ret = PrlvmCfg GetName (hVm, szVmNameReturned, &nBufSize);

if (PRLiFAILED(ret))
{
printf ("PrlvmCfg GetName returned with error (%s)\n",
prl result to string(ret));

}

else

{
printf (" (%d) %s\n\n", i+1l, szVmNameReturned) ;

}
// Free the virtual machine handle.
PrlHandle Free (hVm);

}

return PRL ERR SUCCESS;

Searching for Virtual Machine by Name

This section contains am example of how to obtain a handle of type PHT VIRTUAL MACHINE
identifying the virtual machine using the virtual machine name as a search parameter. We will use
the sample as a helper function in the later section of this guide that demonstrate how to perform
operations on virtual machines. The sample is based on the code provided in the Obtaining the

Virtual Machine List section (p. 55).

// Obtains a handle of type PHT VIRTUAL MACHINE using the
// virtual machine name as a search parameter.
// Parameters

Parallels C API by Example

58

hServer: A handle of type PHT SERVER.

sVmName: The name of the virtual machine.

hvm: [out] A handle of type PHT VIRTUAL MACHINE
identifying the virtual machine.

_ RESULT GetVmByName (PRL HANDLE hServer, PRL STR sVmName,

PRL HANDLE hResult = PRL INVALID HANDLE;
PRL RESULT nJobResult = PRL INVALID HANDLE;

// Get a list of available virtual machines.
PRL HANDLE hJob = PrlSrv GetVmList (hServer) ;

PRL RESULT ret = PrlJob7Wait(hJOb, 10000) ;
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hServer);
return ret;

}

// Check the results of PrlSrv GetVmList.
ret = PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRL_FAILED (nJobResult))
{
// Handle the error...
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
return ret;

}

// Get the results of PrlSrv GetVmList.
ret = PrlJob GetResult (hJob, &hResult);
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hServer);
return ret;

}

PrlHandle Free (hJob) ;

PRL HANDLE &hVm)

// Iteratre through the results (list of virtual machines returned).

PRL UINT32 nParamsCount = 0;
ret = PrlResult GetParamsCount (hResult, &nParamsCount);

for (PRL UINT32 i = 0; i < nParamsCount; ++i)

{
// Get a handle to result i.
PrlResult GetParamByIndex (hResult, i, &hvm);

// Get the name of the virtual machine for result i.
char vm name[1024];
PRL UINT32 nBufSize = sizeof (vm name) ;

ret = PrlVmCfg GetName (hVm, vm name, &nBufSize);
if (PRL FAILED (ret))

{
// Handle the error...

Parallels C API by Example

}

return PRL ERR FAILURE;
}

// If the name of the virtual machine at this index is equal to sVmName,
// then this is the handle we need.
if (strcmp(sVmName, vm name) == 0)
{
PrlHandle Free (hResult);
return PRL ERR SUCCESS;
}

// It's not the virtual machine being searched for, so free the handle to it.

PrlHandle Free (hVm) ;

// The specified virtual machine was not found.
PrlHandle Free (hResult);

return PRL ERR NO DATA;

Obtaining Virtual Machine Configuration Information

The virtual machine configuration information is obtained using functions of the

PHT VM CONFIGURATION object. The functions are prefixed with Pr1vmCfg . To use the
functions, a handle of type PHT VM CONFIGURATION must first be obtained from the virtual
machine object (a handle of type PHT VIRTUAL MACHINE) using the Prlvm GetConfig
function. The following example shows how to obtain the virtual machine name, guest operating
system type and version, RAM size, HDD size, and CPU count. To obtain the virtual machine
handle (hvm input parameter), use the helper function described in the Searching for Virtual
Machine by Name section (p. 57).

PRL RESULT GetVmConfig (PRL HANDLE hVm)

{

PRL RESULT ret = PRL ERR UNINITIALIZED;

// Obtain the PHT VM CONFIGURATION handle.
PRL HANDLE hVmCfg = PRL INVALID HANDLE;

ret

if

{

}

= Prlvm GetConfig (hVm, &hVmCfg) ;
(PRL_FAILED (ret))

// Handle the error...
return ret;

// Get the virtual machine name.
PRL STR szVmName;
PRL UINT32 nVmNameSize = 0;

// Call once with NULL (PRL INVALID HANDLE) to get the size
// of the buffer to allocate for the VM name.
Pr1vmCfg GetName (hVmCfg, PRL INVALID HANDLE, &nVmNameSize) ;

// Allocate memory for the VM name.
szVmName = (PRL STR)malloc (nVmNameSize) ;

59

Parallels C API by Example

60

// Get the virtual machine name.
Pr1VvmCfg GetName (hVmCfg, szVmName, &nVmNameSize) ;
printf ("Virtual machine name: %s\n", szVmName) ;

free (szVmName) ;

// Get the 0S type.
PRL UINT32 nOsType = 0;
PrlvmCfg GetOsType (hVvmCfg, &nOsType) ;

char* sOsTypeName;
switch (nOsType)

{
case PVS_GUEST TYPE WINDOWS:

sOsTypeName = "Windows";
printf ("OS Type: %$s\n", PVS GUEST TYPE NAME WINDOWS) ;
break;

case PVS_GUEST TYPE LINUX:
printf ("OS Type: %s\n", PVS GUEST TYPE NAME LINUX);
break;

case PVS GUEST TYPE MACOS:
printf ("OS Type: %$s\n", PVS GUEST TYPE NAME MACOS);
break;

case PVS GUEST TYPE FREEBSD:
printf ("OS Type: %$s\n", PVS GUEST TYPE NAME FREEBSD) ;

break;
default:
printf ("OS Type: %$s: %d\n", "Other OS Type: ", nOsType);

}

// Get the 0OS version.

PRL UINT32 nOsVersion = 0;

Pr1lvmCfg GetOsVersion (hvmCfg, &nOsVersion);

printf ("OS Version: %s\n", PVS GUEST TO STRING (nOsVersion)) ;

// Get RAM size.

PRL UINT32 nRamSize = 0;

Pr1VvmCfg GetRamSize (hVmCfg, &nRamSize);
printf ("RAM size: $dMB\n", nRamSize);

// Get default HDD size.

PRL UINT32 nDefaultHddSize = 0;

Pr1vmCfg GetDefaultHddSize (nOsVersion, &nDefaultHddSize);
printf ("Default HDD size: $dMB\n", nDefaultHddSize) ;

// Get CPU count.

PRL UINT32 nCpuCount = 0;

Pr1vmCfg GetCpuCount (hVmCfg, &nCpuCount) ;
printf ("Number of CPUs: %d\n", nCpuCount) ;

return PRL ERR SUCCESS;

Parallels C API by Example

Determining Virtual Machine State

To determine the current state of a virtual machine, first obtain a handle to the virtual machine as
described in the Obtaining a List of Virtual Machines section (p. 55). Then use the

Pr1vmCfg GetState function to obtain a handle of type PHT VM INFO and call the
PrlvmInfo GetState function to obtain the state information. The function returns the virtual
machine state as an enumerator from the VIRTUAL MACHINE STATE enumeration that defines
every possible state and transition applicable to a virtual machine. The following table lists the
available states and transitions:

Enumerator State/Transition Description

VMS UNKNOWN State Unknown or unsupported state.

VMS_STOPPED State Virtual machine is stopped.

VMS_STARTING Transition Virtual machine is starting.

VMS RESTORING Transition Virtual machine is being restored from a
snapshot.

VMS RUNNING State Virtual machine is running.

VMS_PAUSED State Virtual machine is paused.

VMS_SUSPENDING Transition Virtual machine is going into "suspended"
mode.

VMS _STOPPING Transition Virtual machine is stopping.

VMS COMPACTING Transition The Compact operation is being performed
on a virtual machine.

VMS _SUSPENDED State Virtual machine is suspended.

VMS SNAPSHOTING Transition A snapshot of the virtual machine is being
taken.

VMS_ RESETTING Transition Virtual machine is being reset.

VMS PAUSING Transition Virtual machine is going into the "paused"”
mode.

VMS CONTINUING Transition Virtual machine is being brought back up
from the "paused" mode.

VMS_MIGRATING Transition Virtual machine is being migrated.

VMS_DELETING_STATE Transition Virtual machine is being deleted.

VMS RESUMING Transition Virtual machine is being resumed from the

"suspended" mode.

The following example demonstrates how obtain state/transition information for the specified virtual

machine.

PRL RESULT GetVMstate (PRL HANDLE hVm)

{
PRL HANDLE hJob = PRL_ INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hVmInfo = PRL INVALID HANDLE;

61

Parallels C API by Example

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Obtain the PHT VM CONFIGURATION handle.
PRL HANDLE hvmCfg = PRL INVALID HANDLE;
ret = Prlvm GetConfig (hvm, &hVmCfq) ;

// Obtain a handle of type PHT VM INFO containing the
// state information. The object will also contain the
// virtual machine access rights info. We will discuss
// this functionality later in this guide.

hJob = Prlvm GetState (hvmCfqg) ;

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Rnalyze the result of Prlvm GetState.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;

}

// Get job result.
ret = PrlJob GetResult (hdob, &hJobResult);
PrlHandle Free (hJob) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Get the PHT VM INFO handle.
ret = PrlResult GetParam(hJobResult, &hVmInfo);
PrlHandle Free (hJobResult) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Get the virtual machine state.
VIRTUAL_MACHINE_STATE vm_state = VMS_UNKNOWN;
ret = PrlVmInfo GetState (hVmInfo, &vm state);
if (PRL_FAILED (ret))

{
// Handle the error...

62

Parallels C API by Example

PrlHandle Free (hVmInfo) ;
return -1;

}

printf ("Status: ");

switch (vm state) {
case VMS UNKNOWN:
printf ("Unknown state\n");
break;
case VMS STOPPED:
printf ("Stopped\n") ;
break;
case VMS STARTING:
printf ("Starting...\n");
break;
case VMS RESTORING:
printf ("Restoring...\n");
break;
case VMS RUNNING:
printf ("Running\n") ;
break;
case VMS PAUSED:
printf ("Paused\n") ;
break;
case VMS SUSPENDING:
printf ("Suspending...\n") ;
break;
case VMS STOPPING:
printf ("Stopping...\n");
break;
case VMS COMPACTING:
printf ("Compacting...\n");
break;
case VMS SUSPENDED:
printf ("Suspended\n") ;
break;
default:
printf ("Unknown state\n");
}
printf ("\n") ;

PrlHandle Free (hVmCfg) ;
PrlHandle Free (hVmInfo) ;

return 0;

Starting, Stopping, Resetting a Virtual Machine

Note: \When stopping or resetting a virtual machine, please be aware of the following important
information:

Stopping a virtual machine is not the same as performing a guest operating system shutdown operation.
When a virtual machine is stopped, it is a cold stop (i.e. it is the same as turning off the power to a
physical computer). Any unsaved data will be lost. However, if the OS in the virtual machine supports
ACPI (Advanced Configuration and Power Interface) then you can set the second parameter of the
Prlvm Stop function to PRL FALSE in which case, the ACPI will be used and the machine will be
properly shut down.

Parallels C API by Example

Resetting a virtual machine is not the same as performing a guest operating system restart operation. It
is the same as pressing the "Reset" button on a physical box. Any unsaved data will be lost.

The following sample function demonstrates how start, stop, and reset a virtual machine.

PRL RESULT StartStopResetVm(PRL HANDLE hVm, VIRTUAL MACHINE STATE action)
{

PRL RESULT ret = PRL ERR UNINITIALIZED;

PRL HANDLE hJob = PRL_ INVALID HANDLE;

PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

if (action == VMS RUNNING)
{
// Start the virtual machine.
hJob = Prlvm Start (hVm) ;
printf ("Starting the virtual machine... \n");

}
else if (action == VMS STOPPED)

{
// Stop the virtual machine.
hJob = PrlvVm Stop (hVm, PRL TRUE) ;
printf ("Stopping the virtual machine... \n");

}
else if (action == VMS RESETTING)

{
// Reset the virtual machine.
hJob = Prlvm Reset (hVm) ;
printf ("Resetting the virtual machine... \n");

}

elise

{
printf ("Invalid action type specified \n");
return PRL ERR FATILURE;

}

PrlJob Wait (hJob, 10000) ;
PrlJob GetRetCode (hJob, &nJobReturnCode) ;

if (PRL_FAILED (nJobReturnCode))

{
printf ("Error: $s\n", prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob);
return PRL ERR FAILURE;

}

return PRL ERR SUCCESS;

Suspending and Pausing a Virtual Machine

Suspending a Virtual Machine

When a virtual machine is suspended, the information about its state is stored in non-volatile
memory. A suspended virtual machine can resume operating in the same state it was in at the point
it was placed into a suspended state. Resuming a virtual machine from a suspended state is
quicker than starting a virtual machine from a stopped state.

64

Parallels C API by Example

To suspend a virtual machine, obtain a handle to the virtual machine, then call Pr1vm Suspend.

The following example will suspend a virtual machine called Windows XP - 01.

const char *szVmName = "Windows XP - 01";

// Get a handle to virtual machine with name szVmName.
PRL HANDLE hVm = GetVmByName ((char*)szVmName, hServer);
if (hVvm == PRL INVALID HANDLE)
{
fprintf (stderr, "Virtual machine \"%$s\" was not found.\n", szVmName) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
exit (=1);
}

PRL RESULT nJobResult;
PRL HANDLE hJob = PrlVm Suspend (hVm) ;
PRL RESULT ret = PrlJob Wait (hJob, 1000);
if (PRL_FAIL (ret))
{
fprintf (stderr, "PrlJob Wait for PrlVm Suspend failed. Error: $s",
prl result to string(ret));
PrlHandle Free (hServer);
PrlHandle Free (hJob);
PrlApi Deinit () ;
SdkWrap Unload() ;
exit (-1);
}
PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRL_FAILED(nJobReSult))
{
fprintf (stderr, "PrlVm Suspend failed with error: %$s\n",
prl result to string(nJobResult));
PrlHandle Free (hVm);
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

A suspended virtual machine can be stopped completely (placed into a "stopped" state) using the
Pr1vm DropSuspendedState function.

Pausing a Virtual Machine

Pausing a virtual machine will pause execution of the virtual machine. This can be achieved using
PrlvVm Pause. PrlVm Pause takes two parameters: a handle to the virtual machine, and a
boolean value indicating if ACPI should be used. The above example could be modified to pause a
virtual machine by replacing the line:

PRL HANDLE hJob = PrlVm Suspend (hVm) ;
with:

PRL HANDLE hJob = PrlVm Pause (hVm, PRL FALSE) ;

65

Parallels C API by Example

It would also be necessary to change the error messages accordingly.

Resuming / Continuing a Virtual Machine

A suspended or paused virtual machine can be restarted using Pr1vm Start. Alternatively,
Pr1vm Resume can be used to resume execution of a suspended virtual machine.

Dropping Suspended State

A suspended virtual machine can be shut down using Pr1vm DropSuspendedState. If thisis
used, any unsaved data will be lost.

Creating a New Virtual Machine

The first step in creating a new virtual machine is to create a blank virtual machine and register it
with the Parallels Service. A blank virtual machine is the equivalent of a hardware box with no
operating system installed on the hard drive. Once a blank virtual machine is created and
registered, it can be powered on and an operating system can be installed on it.

In this section, we will discuss how to create a typical virtual machine for a particular OS type using
a sample configuration. By using this approach, you can easily create a virtual machine without
knowing all of the little details about configuring a virtual machine for a particular operating system

type.
The steps involved in creating a typical virtual machine are:

1 Obtain a new handle of type PHT VIRTUAL MACHINE using the Pr1Srv CreateVm
function. The handle will identify our new virtual machine.

2 Obtain a handle of type PHT VM CONFIGURATION by calling the Pr1vm GetConfig
function. The handle is used for manipulating virtual machine configuration settings.

3 Set the default configuration parameters based on the version of the OS that you will later install
in the virtual machine. This step is performed using the Pr1vmCfg SetDefaultConfig
function. You supply the version of the target OS, and the function will generate the appropriate
configuration parameters automatically. The OS version parameter value is specified using
predefined macros. The names of the macros are prefixed with PvS_GUEST VER . You can
find the macro definitions in the C APl Reference guide or in the Pr10ses. h file. In addition to
the OS information, the Pr1vmCfg SetDefaultConfig function allows to specify the
physical host configuration which will be used to connect the virtual devices inside a virtual
machine to their physical counterparts. The devices include floppy disk drive, CD drive, serial
and parallel ports, sound card, etc. To connect the available host devices, obtain a handle of
type PHT SERVER CONFIG (physical host configuration) using the Pr1Srv_GetSrvConfig
function. The handle should then be passed to Pr1vmCfg SetDefaultConfig together
with OS information and other parameters. If you don't want to connect the devices, set the
hSrvConfig parameter to PRL INVALID HANDLE.

66

Parallels C API by Example

4 Choose a name for the new virtual machine and set it using the Pr1vmCfg SetName function.

5 Modify some of the default configuration parameters if needed. For example, you may want to
modify the hard disk image type and size, the amount of memory available to the machine, and
the networking options. You will have to obtain an appropriate handle for the type of the
parameter that you would like to modify and call one of its functions to perform the modification.
The code sample below shows how to modify some of the default values.

6 Create and register the new machine using the Pr1vm Reg function. This step will create the
necessary virtual machine files on the host and register the machine with the Parallels Service.
The directory containing the virtual machine files will have the same name as the virtual machine
name. The directory will be created in the default location for this Parallels Service. If you would
like to create the virtual machine directory in a different location, you may specify the desired
parent directory name and path.

The following sample demonstrates how to create a new virtual machine. The sample assumes that
the client program has already obtained a server object handle (hServer) and performed the login
operation.

PRL HANDLE hVm = PRL INVALID HANDLE;

PRL HANDLE hVmCfg = PRL INVALID HANDLE;
PRL HANDLE hResult = PRL INVALID HANDLE;
PRL RESULT nJobRetCode;

PRL RESULT ret;

// Obtain a new virtual machine handle.
ret = PrlSrv CreateVm(hServer, &hvm);
if (PRLiFAILED(ret))
{
// Error handling goes here...
return ret;

}

// Get the host config info.
hJob = PrlSrv GetSrvConfig (hServer);
ret = PrlJob Wait (hJob, 10000);

// Check the return code of PrlSrv GetSrvConfig.
PrlJob GetRetCode (hJob, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: $s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJob);
PrlHandle Free (hVm) ;
return nJobRetCode;

}

// Get a handle to the object containing the result of PrlSrv GetSrvConfig,
// and then get a hosts configuration handle from it.

ret = PrlJob GetResult (hJob, &hResult);

PRL HANDLE hSrvCfg = PRL INVALID HANDLE;

PrlResult GetParam(hResult, &hSrvCfg);

// Free job and result handles.
PrlHandle Free (hJob) ;
PrlHandle Free (hResult);

// Now that we have the host configuration data,

67

Parallels C API by Example

// we can set the default configuration for the new virtual machine.
ret = PrlvVm GetConfig (hVm, &hvVmCfqg);
ret = PrlVvmCfg SetDefaultConfig (

hvmCfg, // VM config handle.
hSrvCfg, // Host config data.
PVS GUEST VER WIN 2003, // Target OS version.
PRL TRUE) ; // Create and connect devices.

if (PRLiFAILED(ret))
{
fprintf (stderr, "Error: %$s\n", prl result to string(ret));
PrlHandle Free (hSrvCfg);
PrlHandle Free (hVmCfg) ;
PrlHandle Free (hVm);
return ret;

}
PrlHandle Free (hSrvCfg);

// Set the virtual machine name.
ret = PrlvmCfg SetName (hVmCfg, "My Windows Server 2003");

// The following two calls demonstrate how to modify
// some of the default values of the virtual machine configuration.
// These calls are optional. You may remove them to use the default values.

//

// Set RAM size for the machine to 256 MB.
ret = PrlvmCfg SetRamSize (hvmCfg, 256);

// Set virtual hard disk size to 20 GB.

// First, get the handle to the hard disk object using the

// PrlVmCfg GetHardDisk function. The index of 0 is used

// because the default configuration has just one virtual hard disk.
// After that, use the handle to set the disk size.

PRL HANDLE hHDD = PRL INVALID HANDLE;

ret = PrlvmCfg GetHardDisk (hvmCfg, 0, &hHDD) ;

ret = PrlVmDevHd SetDiskSize (hHDD, 20000) ;

// Create and register the machine with the Parallels Service.
// This 1is an asynchronous call. Returns a job handle.

hJob = Prlvm Reg (hVm, // VM handle.
o // VM root directory (using default).
PRL TRUE); // Using non-interactive mode.

// Wait for the operation to complete.
ret = PrlJob Wait (hJob, 10000);

// Check the return code of PrlvVm Reg.
PrlJob GetRetCode (hJob, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: $%$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJob) ;
PrlHandle_Free(thCfg);
PrlHandle Free (hVm) ;
return nJobRetCode;

}

// Delete handles.
PrlHandle Free (hJob);

68

Parallels C API by Example

PrlHandle Free (hVmCfg) ;
PrlHandle Free (hVm) ;

Searching for Virtual Machines

A host computer may have virtual machines on its hard drive that are not currently registered with
the Parallels Service. This can happen when a virtual machine is removed from the Parallels Service
registry but its files are kept on the drive, or when a virtual machine files are manually copied to the
drive from another computer. Parallels C API provides the Pr1Srv StartSearchVms function
that can be used to find such virtual machines on the specified host at the specified location on the
hard drive. The function accepts a string containing a directory name and path and searches the
directory and all its subdirectories for unregistered virtual machines. It then returns a list of

PHT FOUND VM INFO handles, each containing information about an individual virtual machine
that it finds. You can then decide whether you want to keep the machine as-is, register it, or
remove it from the hard drive.

Since the search operation may take a long time (depending on the size of the specified directory
tree), the Pr1Srv_ StartSearchvms function should be executed using the callback functionality
(p. 20). The callback function will be called for every virtual machine found and a single instance of
the PHT FOUND VM INFO handle will be passed to it. As we discussed earlier in this guide (p. 20),
a callback function can receive two types of objects: jobs (PHT JOB) and events (PHT EVENT). In
this instance, the information is passed to the callback function as an event of type

PET DSP _EVT FOUND LOST VM CONFIG. To following steps are involved in processing the
event inside the callback function:

1 Determine the type of the event using the Pr1Handle GetType function. If it is
PET DSP _EVT FOUND LOST VM CONFIG then the data passed to the callback function
contains information about an unregistered virtual machine. If not, then the event was generated
by some other function and contains the data relevant to that function.

2 Usethe PrlEvent GetParam function to obtain a handle of type PHT EVENT PARAMETER
(this is a standard event processing step).

3 Usethe Prl1EvtPrm ToHandle function to obtain a handle of type PHT FOUND VM INFO
containing the virtual machine information.

4 Use functions of the PHT FOUND VM INFO object to determine the location of the virtual
machine files, the virtual machine name, guest OS version, and some other information.

The following is an implementation of the steps above:

static PRL RESULT callback (PRL HANDLE hEvent, PRL VOID PTR pUserData)
{

PRL RESULT ret = PRL ERR UNINITIALIZED;

PRL HANDLE TYPE nHandleType;

PrlHandle GetType (hEvent, &nHandleType);

// If this is a job, release the handle and exit.

// Normally, we would process this, i1f we were after
// a job.

if (nHandleType == PHT JOB)

{

69

Parallels C API by Example

PrlHandle Free (hEvent);
return 0;

}

// If it's not a job, then it is an event (PHT EVENT).
// Get the type of the event received.

PRL EVENT TYPE eventType;

PrlEvent GetType (hEvent, &eventType) ;

// Check the event type. If it's what we are looking for, process it.
if (eventType == PET DSP EVT FOUND LOST VM CONFIG)

{
PRL UINT32 nParamsCount = 0;

// this will receive the event parameter handle.
PRL HANDLE hParam = PRL INVALID HANDLE;

// The PrlEvent GetParam function obtains a handle of type
// PHT EVENT PARAMETER.
ret = PrlEvent GetParam(hEvent, 0, &hParam):;
if (PRL_FAILED (ret))
{
fprintf (stderr, "[4]1%.8X: %s\n", ret,
prl result to string(ret));
PrlHandle Free (hParam) ;
PrlHandle Free (hEvent);
return ret;

}

PRL HANDLE hFoundVmInfo = PRL INVALID HANDLE;
ret = PrlEvtPrm ToHandle (hParam, &hFoundVmInfo) ;
if (PRL FAILED (ret))
{
fprintf (stderr, "[9]1%.8X: %s\n", ret,
prl result to string(ret));
PrlHandle Free (hParam) ;
PrlHandle Free (hEvent);
return ret;

}

// Get the virtual machine name.
PRL CHAR sName[1024];
PRL UINT32 nBufSize = sizeof (sName) ;

ret = PrlFoundVmInfo GetName (hFoundVmInfo, sName, &nBufSize);
printf ("VM name: %$s\n", sName) ;

// Get the name and path of the virtual machine directory.

PRL CHAR sPath[1024];

nBufSize = sizeof (sPath);

ret = PrlFoundVmInfo GetConfigPath (hFoundvmInfo, sPath, &nBufSize);
printf ("Path: %s\n\n", sPath);

PrlHandle Free (hFoundvVmInfo) ;
PrlHandle Free (hEvent);
return 0;

}
// The received event handler MUST be freed.

PrlHandle Free (hEvent);
}

To begin the search operation, place the following code into your main program:

70

Parallels C API by Example

PRL HANDLE hJob = PRL INVALID HANDLE;
PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Register the event handler.
Prl1Srv_RegEventHandler (hServer, &callback, NULL);

// Create a string list object and populate it

// with the name and path of the directory to search.

PRL HANDLE hStringList = PRL INVALID HANDLE;

ret = PrlApi CreateStringsList (&¢hStringList);

ret = PrlStrList AddItem(hStringList, "/Users/Shared/Parallels/");

// Begin the search operation.
hJob = PrlSrv StartSearchVms (hServer, hStringList);
PrlHandle Free (hJob);

In order for the callback function to be called, your program should have a global loop (the program
never exits on its own). The callback function will be called as soon as the first virtual machine is
found. If there are no unregistered virtual machines in the specified directory tree, then the function
will never be called as a PET DSP_EVT FOUND LOST VM CONFIG event (it will still be called at
least once as a result of the started job and will receive the job object but this and possibly other
callback invocations are irrelevant in the context of this example).

Receiving the search results synchronously

It is also possible to use this function synchronously using the Pr1Job Wait function (p. 20). In
this case, the information is returned as a list of PHT FOUND VM INFO objects contained in the
job object returned by the Pr1Srv_StartSearchvms function. The following example
demonstrates how to call the function and to process results synchronously.

PRL RESULT SearchVMsSample (PRL HANDLE hServer)

{
PRL HANDLE hJob = PRL_INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hFoundVmInfo = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Create a string list object and populate it

// with the name and path of the directory to search.

PRL HANDLE hStringList = PRL TINVALID HANDLE;

PrlApi CreateStringsList (¢hStringList);
PrlStrList AddItem (hStringList, "/Users/Shared/Parallels/");

// Begin the search operation.
hJob = PrlSrv StartSearchVms (hServer, hStringList);

// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;

}

// Analyze the result of PrlSrv StartSearchVms.

71

Parallels C API by Example

72

ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob) ;
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob);
return -1;

}

// Get job result.
ret = PrlJob GetResult (hJob, &hJobResult);
PrlHandle Free (hJob);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Iterate through the returned list obtaining a

// handle of type PHT FOUND VM INFO in each iteration containing
// the information about an individual virtual machine.

PRL UINT32 nIndex, nCount;

PrlResult GetParamsCount (hJobResult, &nCount) ;

for (nIndex = 0; nIndex < nCount ; nIndex++)

{
PrlResult GetParamByIndex (hJobResult, nIndex, &hFoundVmInfo);

// Get the virtual machine name.
PRL CHAR sName[1024];
PRL UINT32 nBufSize = sizeof (sName) ;

ret = PrlFoundVmInfo GetName (hFoundVmInfo, sName, &nBufSize);
printf ("VM name: %$s\n", sName) ;

// Get the name and path of the virtual machine directory.

PRL CHAR sPath[1024];

nBufSize = sizeof (sPath);

ret = PrlFoundVmInfo GetConfigPath (hFoundVmInfo, sPath, &nBufSize);
printf ("Path: %$s\n\n", sPath);

PrlHandle Free (hFoundVmInfo) ;
}
PrlHandle Free (hJobResult) ;
PrlHandle Free (hStringList);

Parallels C API by Example

Adding an Existing Virtual Machine

A host may have virtual machines that are not registered with the Parallels Service. This can
happen if a virtual machine was previously removed from the Parallels Service registry or if the
virtual machine files were manually copied from a different location. If you know the location of such
a virtual machine, you can easily register it with the Parallels Service using the
Prl1Srv_RegisterVvm function. The function accepts a server handle, name and path of the
directory containing the virtual machine files, and registers the machine.

Note: The Pr1Srv RegisterVm function does NOT generate new MAC addresses for the virtual
network adapters that already exist in the virtual machine. If the machine is a copy of another virtual
machine then you should set new MAC addresses for its network adapters after you register it. The
example at the end of this section demonstrates how this can be accomplished. For more information on
modifying an existing virtual machine, please see the Modifying Virtual Machine Configuration section
(p. 79).

The following sample function demonstrates how to add an existing virtual machine to the Parallels
Service. The function takes a handle of type PHT SERVER and a string specifying the name and
path of the virtual machine directory. It registers the virtual machine with the Service and then
modifies the MAC address of every virtual network adapter installed in it.

PRL RESULT RegisterExistingVM(PRL HANDLE hServer, PRL CONST STR sVmDirectory)
{

PRL HANDLE hJob = PRL INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobRetCode = PRL ERR UNINITIALIZED;

// Register the virtual machine.
hJob = PrlSrv RegisterVm(
hServer,
sVmDirectory,
PRL TRUE); // Using non-interactive mode.

ret = PrlJob Wait (hJob, 10000);

// Check the return code of PrlSrv RegisterVm.
PrlJob GetRetCode (hJob, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
printf ("PrlSrv_RegisterVm returned error: %$s\n",
prl result to string(nJobRetCode)) ;
PrlHandle Free (hJob);
return -1;

}

// Obtain the virtual machine handle from the job object.
// We will use the handle later to modify the virtual machine
// configuration.
PRL HANDLE hVm = PRL INVALID HANDLE;
ret = PrlJob GetResult (hJob, &hJobResult);
if (PRL_FAILED (ret))
{
// Handle the error...

73

Parallels C API by Example

return ret;

ret = PrlResult GetParam(hJobResult, &hVm) ;
if (PRLiFAILED(ret))
{

// Handle the error...

return ret;

PrlHandle Free (hJob) ;
PrlHandle Free (hJobResult) ;

printf ("Virtual machine '%s' was successfully registered.",
sVmDirectory) ;

// The following code will generate and set a new MAC address

// for every virtual network adapter that exists in the virtual machine.
// This step is optional and should normally be performed when the virtual
// machine is a copy of another virtual machine.

PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;

// Begin the virtual machine editing operation.

hJobBeginEdit = PrlVm BeginEdit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;

if (PRL_FAILED (nJobRetCode))

{
fprintf (stderr, "Error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Obtain a handle of type PHT VM CONFIGURATION containing the
// virtual machine configuration data.
PRL HANDLE hVmCfg = PRL INVALID HANDLE;
ret = Prlvm GetConfig (hVm, &hvmCfqg);
if (PRL_FAILED (ret))
{
// Handle the error...
return ret;

}

// Determine the number of the network adapters
// installed in the machine.
PRL UINT32 nCount = PRL_ERR UNINITIALIZED;
ret = PrlvmCfg GetNetAdaptersCount (hvmCfg, &nCount);
if (PRL_FAILED (ret))
{
// Handle the error...
return ret;

}

// Itereate through the adapter list.

PRL HANDLE hNetAdapter = PRL INVALID HANDLE;

for (PRL UINT32 i = 0; i < nCount; ++i)

{
ret = PrlvmCfg GetNetAdapter (hvmCfg, i, &hNetAdapter);
if (PRL FAILED (ret))

74

Parallels C API by Example

// Handle the error...
return ret;

}

// Automatically generate new MAC address for the current adapter.
// The address will be updated in the configuration object.
ret = PrlVmDevNet GenerateMacAddr (hNetAdapter) ;
if (PRL_FAILED (ret))
{
// Handle the error...
return ret;

}

// Commit the changes to the virtual machine.
hJobCommit = PrlVm Commit (hVm) ;

// Check the results of the commit operation.
ret = PrlJob Wait (hJobCommit, 10000);

PrlJob GetRetCode (hJobCommit, &nJobRetCode) ;
if (PRL_FAILED(nJobRetCOde))

{

fprintf (stderr, "Commit error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobCommit) ;
return nJobRetCode;

}

PrlHandle Free (hNetAdapter) ;
PrlHandle Free (hVm) ;
PrlHandle Free (hVmCfg) ;
PrlHandle Free (hJobCommit) ;
PrlHandle Free (hJobBeginEdit) ;

return 0O;

Cloning a Virtual Machine

A new virtual machine can also be created by cloning an existing virtual machine. The machine will
be created as an exact copy of the source virtual machine and will be automatically registered with
the Parallels Service. The cloning operation is performed using the Pr1vm_ Clone function. The
following parameters must be specified when cloning a virtual machine:

1

A valid handle of type PHT VIRTUAL MACHINE containing information about the source virtual
machine.

A unigue name for the new virtual machine (the name is NOT generated automatically).

The name of the directory where the virtual machine files should be created (or an empty string
to create the files in the default directory).

A boolean value specifying whether to create the new machine as a valid virtual machine or as a
template. PRL_TRUE indicates to create a template. PRL._FALSE indicates to create a virtual
machine. See the Working with Virtual Machine Templates (p. 94) section for more virtual
machine info and examples.

75

Parallels C API by Example

The source virtual machine must be registered with the Parallels Service before it can be cloned.

The following sample function demonstrates how to clone an existing virtual machine. When testing
a function, the hvm parameter must contain a valid handle of type PHT VIRTUAL MACHINE (the
source virtual machine to clone). On completion, the new virtual machine should appear in the list
of registered virtual machines.

PRL RESULT CloneVmSample (PRL HANDLE hVm)

{
PRL HANDLE hJob = PRL_INVALID HANDLE;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;
PRL RESULT ret = PRL ERR UNINITIALIZED;

// Declare and populate variables that
// will be used as input parameters
// in the function that clones a VM.

// Virtual machine name.

// Get the name of the original VM and use

// it in the new virtual machine name. You can
// use any name that you like of course.

char vm name[1024];

PRL UINT32 nBufSize = sizeof (vm name) ;

PRL HANDLE hvmCfg = PRL INVALID HANDLE;

ret = PrlVm GetConfig (hVm, &hVmCfg);

ret = PrlvmCfg GetName (hVvmCfg, vm name, &nBufSize);
char new vm name[1024] = "Clone of ";

strcat (new_vm name, vm name) ;

// Name of the target directory on the

// host.

// Empty string indicates that the default
// directory should be used.

PRL CHAR PTR new vm root path = "";

// Virtual machine or template?

// The cloning functionality allows to create
// a new virtual machine or a new template.

// True indicates to create a template.

// False indicates to create a virtual machine.
// We are creating a virtual machine.

PRL BOOL bCreateTemplate = PRL FALSE;

// Begin the cloning operation.
hJob = PrlVm Clone (hVm, new vm name, new vm root path, bCreateTemplate);
// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
printf ("Error: (%s)\n",
prl result to string(ret));
PrlHandle Free (hJob);
PrlHandle Free (hVmCfg) ;
return -1;

}

// Analyze the result of PrlvVm Clone.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRLiFAILED(ret))

76

Parallels C API by Example

// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hVmCfg) ;
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
printf ("Error: (%s)\n",
prl result to string(nJobReturnCode)) ;
PrlHandle Free (hJob);
PrlHandle Free (hvmCfg) ;
return -1;
}
PrlHandle Free (hJob) ;
PrlHandle Free (hvmCfg) ;
return 0;

Deleting a Virtual Machine

If a virtual machine is no longer needed, it can be removed. There are two options for removing a

virtual machine:

1 Un-register the virtual machine using Pr1vm_Unreg. This will remove the virtual machine from
the list of the virtual machines registered with the Service. Once a virtual machine has been
unregistered it is not possible to use it. The directory containing the virtual machine files will
remain on the hard drive of the host computer, and the virtual machine can later be re-

registered and used.

2 Delete the virtual machine using Pr1vm Delete. The virtual machine will be unregistered, and
the directory (or just some of its files that you can specify) will be deleted.

The following example demonstrates un-registering a virtual machine. Note that this example
makes use of a function called GetvmByName that can be found in the Obtaining a List of Virtual

Machines section.

const char *szVmName = "Windows XP - 02";

// Get a handle to virtual machine with name szVmName.
PRL HANDLE hVm = GetVmByName ((char*)szVmName, hServer);
if (hVm == PRL INVALID HANDLE)
{
fprintf (stderr, "VM \"%$s\"was not found.\n", szVmName) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Unregister a virtual machine.

PRL HANDLE hJob = PrlVm Unreg (hVm) ;

PRL RESULT ret = PrlJob Wait (hJob, 10000);
if (PRL_FAILED(ret))

{

printf ("PrlJdob Wait failed for PrlVm Unreg. Error returned:

%s\n",

77

Parallels C API by Example

prl result to string(ret));
PrlHandle Free (hVm) ;
PrlHandle Free (hJob);
return -1;

}

PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRL_FAILED (nJobResult))
{
printf ("Prlvm Unreg failed. Error returned: %$s\n",
prl result to string(nJobResult));
PrlHandle Free (hVm);
PrlHandle Free (hJob) ;
return -1;

}

The following example demonstrates deleting a virtual machine and deleting config.pvs within
the virtual machine directory:

// Delete a virtual machine and a specified file.
PRL HANDLE hDevicelList = PRL INVALID HANDLE;
PrlApi CreateStringsList (&¢hDevicelist) ;
PrlStrList AddItem (hDeviceList, "/Users/Shared/Parallels/WinXP02/config.pvs");
hJob = Prlvm Delete (hVm, hDevicelist) ;
PrlHandle Free (hDevicelList);
ret = PrlJob Wait (hJob, 10000);
if (PRL_FAILED (ret))
{
printf ("PrlJob Wait failed for PrlVm Unreg. Error returned: %$s\n",
prl result to string(ret));
PrlHandle Free (hVm) ;
PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit () ;
SdkWrap Unload() ;
return -1;

}

PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRL_FAILED (nJobResult))
{
printf ("Prlvm Delete failed. Error returned: %s\n",
prl_result_to_string(nJobResult));
PrlHandle Free (hVm) ;
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

To delete the virtual machine and the virtual machine directory (all files belonging to the virtual
machine), omit the line:

PrlStrList AddItem(hDevicelList, "/Users/Shared/Parallels/WinXP02/config.pvs");

from the above example. Note that this operation is irreversible.

78

Parallels C API by Example

Modifying Virtual Machine Configuration

The Parallels C API provides a complete set of functions to modify the configuration parameters of
an existing virtual machine. You can find the list of the available functions in the Parallels C API
Reference guide by looking at the PHT VM CONFIGURATION group. Most of the get/set
functions in the group allow to obtain and modify the virtual machine configuration parameters.
Some parameters are handled as objects and require extra steps in getting or setting them. The
following subsections describe how to modify the most commmon configuration parameters and
provide code samples. The samples assume that:

« you've already obtained a handle to the server object and logged on to the Parallels Service.

« you've already obtained a handle to the virtual machine that you would like to modify.

Note: All operations on virtual machine devices (adding, modifying, removing) must be performed on a
stopped virtual machine. An attempt to modify the device configuration on a running machine will result in
error.

PrlVm_BeginEdit and PrlVm_Commit Functions

Al virtual machine configuration changes must begin with the Pr1vm BeginEdit and end with
the Pr1vm Commit call. These two functions are used to detect collisions with other clients trying
to modify the configuration settings of the same virtual machine.

When Pr1vm BeginEdit is called, the Parallels Service timestamps the beginning of a
configuration change(s) operation. It does not lock the machine, so other clients can make changes
to the same virtual machine at the same time. The function will also automatically update your local
virtual machine object with the current virtual machine configuration information. This is done in
order to ensure that your local object contains the changes that might have have happened since
you obtained the virtual machine handle.

When you are done making the changes, you must call the Pr1vm Commit function. The first
thing that the function will do is verify that the virtual machine configuration has not been modified
by other client(s) since you called the Pr1vm BeginEdit function. If it has been, your changes
will be rejected and Pr1vm Commit will return with error. In such a case, you will have to reapply
your changes. In order to do that, you will have to get the latest configuration using the

Pr1vm GetConfig function, compare your changes with the latest changes, and make a
decision about merging them. Please note that Pr1vm GetConfig function will update the
configuration data in your current virtual machine object and will overwrite all existing data,
including the changes that you've made to it. Furthermore, the Pr1vm BeginEdit function will
also overwrite all existing data (see above). If you don't want to loose your data, save it locally
before calling Pr1vm GetConfig or PrlVm BeginEdit.

The following example demonstrates how to use the Pr1vm BeginEdit and Prlvm Commit
functions:

PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;

79

Parallels C API by Example

PRL RESULT nJobRetCode = PRL INVALID HANDLE;

// Timestamps the beginning of the "transaction".

// Updates the hVm object with current configuration data.
hJobBeginEdit = PrlVm BeginEdit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;

if (PRL_FAILED (nJobRetCode))

{
fprintf (stderr, "Error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}
// The code modifying configuration parameters goes here...

// Commits the changes to the virtual machine.
hJobCommit = PrlVm Commit (hVm) ;

// Check the results of the commit operation.
ret = PrlJob Wait (hJobCommit, 10000) ;

PrlJob GetRetCode (hJobCommit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))

{

fprintf (stderr, "Commit error: %$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobCommit) ;
return nJobRetCode;

}
Obtaining a PHT_VM_CONFIGURATION handle

Before you can use any of the virtual machine configuration management functions, you have to
obtain a handle of type PHT VM CONFIGURATION. The handle is obtained from the virtual
machine object as shown in the following example:

PRL HANDLE hvmCfg = PRL INVALID HANDLE;
ret = PrlVm GetConfig (hVm, &hvmCfqg);

Once you have the handle, you can use its functions to manipulate the virtual machine configuration
settings. As usual, don't forget to free the handle when it is no longer needed.

Name, Description, Boot Options

The virtual machine name and description modifications are simple. They are performed using a
single call for each parameter:

// Modify VM name.
ret = Prlvm GetConfig (hVm, &hvmCfqg);
ret = PrlVmCfg SetName (hVmCfg, "New Namel") ;

// Modify VM description.

ret = PrlvmCfg SetDescription (hvmCfg, "My updated VM");

To modify the boot options (boot device priority), first make the Pr1vmCfg GetBootDevCount
call to determine the number of the available devices. Then obtain a handle to each device by
making the Pr1vmCfg GetBootDev call in aloop. To place a device at the specified position in
the boot device priority list, use the Pr1BootDev SetSequencelIndex function passing the
device handle and the index (0 - first boot device, 1 - second boot device, and so forth).

80

Parallels C API by Example

The following sample illustrates how to make the above modifications.

PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;
PRL RESULT nJobRetCode = PRL INVALID HANDLE;

// Timestamp the beginning of the transaction.

hJobBeginEdit = PrlvVm BeginEdit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000);

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;

if (PRL_FAILED (nJobRetCode))

{
fprintf (stderr, "Error: $%$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Modify VM name.
ret = PrlVmCfg SetName (hVmCfg, "New Namel") ;

// Modify VM description.
ret = PrlvmCfg SetDescription (hvmCfg, "My updated VM");

// Modify boot options.

// Set boot device list as follows:

// 0. CD/DVD drive.

// 1. Hard disk.

// 2. Network adapter.

// 3. Floppy disk drive.

// Remove all other devices (if any) from the
// boot devices list for this VM.

// Device count.
PRL UINT32 nDevCount;

// A handle identifying the device.
PRL HANDLE hDevice = PRL INVALID HANDLE;

// Device type.
PRL DEVICE TYPE devType;

// Get the total number of devices.
ret = PrlVmCfg GetBootDevCount (hVmCfg, &nDevCount) ;

// Iterate through the device list.

// Get a handle for each available device.

// Set an index for a device in the boot list.
for (int 1 = 0; i < nDevCount; ++1i)

{

ret Pr1lVvmCfg GetBootDev (hvmCfg, i, &hDevice);
ret = PrlBootDev GetType (hDevice, &devType):;

if (devType == PDE OPTICAL DISK)
{

PrlBootDev SetSequencelIndex (hDevice, 0);
}
if (devType == PDE HARD DISK)
{

PrlBootDev SetSequencelndex (hDevice, 1);

}
else if (devType == PDE GENERIC NETWORK ADAPTER)

81

Parallels C API by Example

{

PrlBootDev_ SetSequencelndex (hDevice, 2);

}
else if (devType == PDE FLOPPY DISK)

{

PrlBootDev_ SetSequencelndex (hDevice, 3);

}

else

{

PrlBootDev Remove (hDevice) ;
}
}

// Commit the changes.
hJobCommit = PrlVm Commit (hVm) ;

// Check the results of the commit operation.
ret = PrlJob Wait (hJobCommit, 10000);

PrlJob GetRetCode (hJobCommit, &nJobRetCode) ;
if (PRL_FAILED(nJobRetCOde))

{

fprintf (stderr, "Commit error: %$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobCommit) ;
return nJobRetCode;

}
RAM Size

The size of the memory available to the virtual machine is performed using the
Pr1vmCfg SetRamSize function. The first parameter is the virtual machine handle and the
second parameter is the new RAM size in megabytes:

Pr1lvmCfg SetRamSize (hvmCfg, 512);

Hard Disks

Modifying the size of the existing hard disk image

A virtual machine may have more than one virtual hard disk. To select a disk that you would like to
modify, first retrieve the list of the available disks, as shown in the following example:

PRL HANDLE hHDD = PRL_ INVALID HANDLE;
PRL UINT32 nCount;

// Get the number of disks available.
Pr1lvmCfg GetHardDisksCount (hvmCfg, &nCount) ;

// Iterate through the list.

for (PRL UINT32 i = 0; i < nCount; ++i)

{
// Obtain a handle to the hard disk object.
ret = PrlVmCfg GetHardDisk (hvmCfg, i, &hHDD) ;

// The code selecting the desired HDD goes here...

/] A
// Modify the disk size.
// The hard disk size is specified in megabytes.
ret = PrlvmDevHd SetDiskSize (hHDD, 20000);

/)

82

Parallels C API by Example

Adding a new hard disk

In this example, we will add a hard disk to a virtual machine. The following options are available:

* You may create new or use an existing image file for your new disk.

« Creating a dynamically expanding or a fixed-size disk. The expanding drive image will be initially
created with a size of zero. The space for it will be allocated dynamically on as-needed basis.
The space for the fixed-size disk will be allocated fully at the time of creation.

« Choosing the maximum disk size.

Creating a new image file

In the first example, we will create a new disk image and will add it to a virtual machine.

PRL HANDLE hJobBeginEdit = PRL_ INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;
PRL RESULT nJobRetCode = PRL INVALID HANDLE;

// Timestamp the beginning of the configuration changes operation.
// The hvm specifies the virtual machine that we'll be editing.
//
hJobBeginEdit = PrlVm BeginEdit (hVm) ;
ret = PrlJob Wait (hJobBeginEdit, 10000) ;
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Create a new device handle.

// This will be our new virtual hard disk.

PRL HANDLE hHDD = PRL INVALID HANDLE;

ret = PrlvmCfg CreateVmDev (
hvmCfg, // The target virtual machine.
PHT VIRTUAL DEV_HARD DISK, // Device type.
&hHDD) ; // Device handle.

// Set disk type to "expanding".
ret = PrlVmDevHd SetDiskType (hHDD, PHD EXPANDING HARD DISK) ;

// Set max disk size, in megabytes.
ret = PrlVmDevHd SetDiskSize (hHDD, 32000) ;

// This option determines whether the image file will be splitted
// into chunks or created as a single file.
ret = PrlVmDevHd SetSplitted (hHDD, PRL FALSE) ;

// Choose and set the name for the new image file.

// We must set both the "friendly" name and the "system" name.

// For a virtual device, use the name of the new image file in both
// functions. By default, the file will be

// created in the virtual machine directory. You may specify a

// full path if you want to place the file in a different

// directory.

83

Parallels C API by Example

//
ret PrlvVvmDev SetFriendlyName (hHDD, "harddisk4.hdd");
ret = PrlVmDev SetSysName (hHDD, "harddisk4.hdd"):;

// Set the emulation type.
ret = PrlVmDev_ SetEmulatedType (hHDD, PDT USE IMAGE FILE) ;

// Enable the new disk on successful creation.
ret = PrlVmDev SetEnabled (hHDD, PRL TRUE) ;

// Create the new image file.

hJob = PrlvmDev CreateImage (hHDD,
PRL TRUE, // Do not overwrite if the file exists.
PRL TRUE); // Use non-interactive mode.

// Commit the changes.
hJobCommit = PrlVm Commit (hVm) ;

// Check the results of the commit operation.

ret = PrlJob Wait (hJobCommit, 10000) ;

PrlJob GetRetCode (hJobCommit, &nJobRetCode) ;

if (PRL_FAILED (nJobRetCode))

{
fprintf (stderr, "Commit error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobCommit) ;
return nJobRetCode;

}
Using an existing image file

In the next example, we will use an existing image file to add a virtual hard disk to a virtual machine.
The procedure is similar to the one described above, except that you don't have to specify the disk
parameters and you don't have to create an image file.

// Timestamp the beginning of the configuration changes operation.
// The hVm specifies the virtual machine that we'll be editing.
//
hJobBeginEdit = PrlVm BeginEdit (hVm) ;
ret = PrlJob Wait (hJobBeginEdit, 10000);
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: %$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Create a device handle.

PRL HANDLE hHDD = PRL INVALID HANDLE;

ret = PrlvmCfg CreateVmDev (
hvmCfg, // Target virtual machine.
PHT VIRTUAL DEV HARD DISK, // Device type.
&hHDD) ; // Device handle.

// In this example, these two functions are used

// to specify the name of the existing image file.

// By default, it will look for the file in the

// virtual machine directory. If the file is located
// anywhere else, you must specify the full path here.

ret = PrlVmDev SetFriendlyName (hHDD, "harddisk4.hdd");
84

Parallels C API by Example

ret = PrlVmDev SetSysName (hHDD, "harddisk4.hdd");

// Set the emulation type.
ret = PrlVmDev SetEmulatedType (hHDD, PDT USE IMAGE FILE) ;

// Enable the drive on completion.
ret = PrlVmDev SetEnabled (hHDD, PRL TRUE) ;

// Commit the changes.

hJobCommit = PrlVm Commit (hVm) ;

If the commit operation is successful, a hard disk will be added to the virtual machine and will
appear in the list of the available devices.

Network Adapters

When adding a network adapter to a virtual machine, you first have to choose a networking mode
for it. The following options are available:

« Host-only networking. A virtual machine can communicate with the host and other virtual
machines, but not with external networks.

« Shared networking. Uses the NAT feature. A virtual machine shares the IP address with the
host.

« Bridged networking. A virtual adapter in the VM is bound to a network adapter on the host. The
virtual machine appears as a standalone computer on the network.

Host-only and Shared Networking

The following sample function illustrates how to add virtual network adapters using the host-only
and shared networking (both types are created similarly). The steps are:

1 Callthe Privm BeginEdit function to mark the beginning of the virtual machine editing
operation. This step is required when modifying any of the virtual machine configuration
parameters.

2 Obtain a handle of type PHT VM CONFIGURATION containing the virtual machine
configuration information.

3 Create a new virtual device handle of type PHT VIRTUAL DEV_NET ADAPTER (virtual
network adapter) using the Pr1vmCfg CreatevmbDev function.

4 Set the desired device emulation type (host or shared) using the
PrlvmDev SetEmulatedType function. Virtual network adapter emulation types are defined
inthe PRL_VM DEV_EMULATION TYPE enumeration.

5 The MAC address for the adapter will be generated automatically. If needed, you can set the
address manually using the Pr1vmDevNet SetMacAddress function.

6 Callthe Pr1vm Commit function to finalize the changes.

PRL RESULT AddNetAdapterHostOrShared (PRL HANDLE hVm)

{
PRL HANDLE hJobBeginEdit = PRL_ INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;

85

Parallels C API by Example

86

PRL HANDLE hVmCfg = PRL INVALID HANDLE;
PRL RESULT nJobRetCode = PRL INVALID HANDLE;
PRL UINT32 ret = PRL ERR UNINITIALIZED;

// Timestamp the beginning of the configuration changes operation.
// The hVm parameter specifies the target virtual machine.
hJobBeginEdit = PrlVm BeginEdit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;

if (PRL_FAILED (nJobRetCode))

{

fprintf (stderr, "Error: %s\n", prl result to string(nJobRetCode)) ;

PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Obtain a handle of type PHT VM CONFIGURATION containing
// the virtual machine configuration information.
ret = PrlVm GetConfig (hVm, &hVmCfg);
if (PRL_FAILED (ret))
{
// Handle the error.
}

// Create a virtual network adapter device handle.

PRL HANDLE hNet = PRL INVALID HANDLE;

ret = PrlVmCfg CreateVmDev (
hvmCfg, // The virtual machine configuration handle.
PDE_GENERIC NETWORK ADAPTER, // Device type.
&hNet); // Device handle.

if (PRL_FAILED (ret))

{
// Handle the error.

// For host-only networking, set the device emulation type

// to PDT USE HOST ONLY NETWORK, which is an enumerator from the

// PRL_VM DEV_EMULATION TYPE enumeration.

// For shared networking, set the device emulation type

// to PDT USE SHARED NETWORK, which is also an enumerator from

// the same enumeration.

// Un-comment one of the following lines (and comment out the other)
// to set the the desired emulation type.

PRL VM DEV_EMULATION TYPE pdtType = PDT USE HOST ONLY NETWORK;
//PRL_VM DEV EMULATION TYPE pdtType = PDT USE SHARED NETWORK;

ret = PrlVmDev SetEmulatedType (hNet, pdtType) ;
if (PRL_FAILED(ret))
{
// Handle the error.
}

// By default, a new device is created disabled.

// You can set the "connected" and "enabled" properties
// as desired.

PrlvmDev SetConnected (hNet, PRL TRUE) ;

PrlVmDev SetEnabled (hNet, PRL TRUE) ;

// Commit the changes.
hJobCommit = PrlVm Commit (hVm) ;

Parallels C API by Example

ret = PrlJob Wait (hJobBeginEdit, 10000) ;
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))

{
// Handle the error.

}

// Release all handles.
PrlHandle Free (hNet);
PrlHandle Free (hvmCfg) ;
PrlHandle Free (hJobBeginEdit) ;
PrlHandle Free (hJobCommit) ;

return PRL ERR SUCCESS;
}

Bridged Networking

Compared to host-only and shared network adapters, adding an adapter using bridged networking
involves additional steps. In a bridged networking mode, you are binding the virtual adapter inside a
virtual machine to an adapter on the host machine. Therefore, you first have to retrieve the list of
adapters from the host and select the one you would like to use. The complete procedure of
creating an adapter using bridged networking is as follows:

1 Obtain a list of network adapters installed on the host. This steps is preformed using the
Pr1SrvCfg GetNetAdaptersCount, Pr1SrvCfg GetNetAdapter, and
Pr1SrvCfgDev GetName functions.

2 Begin the virtual machine editing operation and create a new network adapter handle as
described in the Host-only and Shared Networking section (p. 85).

3 Bind the new virtual network adapter to the desired host machine adapter using the
PrlVmDevNet SetBoundAdapterName function.

4 Finalize the changes by calling the Pr1vm_ Commit function.

You can also bind a virtual network adapter to the default adapter on the host machine. In this
case, you don't have to obtain the list of adapters from the host, so you can skip step 1 (above). In
step 3, instead of setting the adapter name, set its index as -1 using the

PrlVmDevNet SetBoundAdapterIndex function.

The following are two sample functions that show the implementation of the steps described
above. The two functions are similar except that the first one shows how to bind a virtual network
adapter to a specific adapter on the host, whereas the second function shows how to bind the
virtual adapter to the default host network adapter.

Example 1:

The function accepts a server handle and a virtual machine handle. The server handle will be used
to obtain the list of network adapters from the host.

PRL RESULT AddNetAdapterBridged (PRL_HANDLE hServer, PRL HANDLE hVm)

{
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;

87

Parallels C API by Example

88

PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;
PRL HANDLE hVmCfg = PRL INVALID HANDLE;

PRL RESULT nJobRetCode = PRL INVALID HANDLE;
PRL UINT32 ret = PRL ERR UNINITIALIZED;

// Obtain a list of the network adapters installed on
// the host.

// First, obtain a handle containing the

// host configuration info.

hJob = PrlSrv GetSrvConfig (hServer);

ret = PrlJob Wait (hJob, 10000);

PrlJob GetRetCode (hJob, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
// Handle the error.
}

// Get job results.
ret = PrlJob GetResult (hJob, &hJobResult);
if (PRL_FAILED (ret))
{
// Handle the error.
}

// server config handle.
PRL HANDLE hSrvCfg = PRL INVALID HANDLE;

// counter.
PRL_UINT32 nCount = PRL INVALID HANDLE;

// Now obtain the actual handle containing the
// host configuration info.
PrlResult GetParam(hJobResult, &hSrvCfqg);

// Get the number of the available adapters from the
// host configuration object.
PrlsrvCfg GetNetAdaptersCount (hSrvCfg, &nCount);

// Net adapter handle.
PRL HANDLE hHostNetAdapter = PRL INVALID HANDLE;
PRL CHAR chHostAdapterName[1024];

// Iterate through the list of the adapters.
for (PRL UINT32 i = 0; i < nCount; ++i)
{
PrlSrvCfg GetNetAdapter (hSrvCfg, i, &hHostNetAdapter);

// Get adapter name.

PRL CHAR chName[1024];

PRL UINT32 nBufSize = sizeof (chName) ;

ret = PrlSrvCfgDev GetName (hHostNetAdapter, chName, &nBufSize);

// Normally, you would iterate through the entire list

// and select an adapter to bind the virtual network adapter to.
// For simplicity, we will simply pick the first one and use it.
strcpy (chHostAdapterName, chName) ;

break;

Parallels C API by Example

// Now that we have the name of the host network adapter,
// we can add a new virtual network adapter to the virtual machine.

// Timestamp the beginning of the configuration changes operation.
// The hVm parameter specifies the target virtual machine.
hJobBeginEdit = PrlVm BeginEdit (hVm) ;
ret = PrlJob Wait (hJobBeginEdit, 10000) ;
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: %s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Obtain a handle of type PHT VM CONFIGURATION containing
// the virtual machine configuration information.
ret = PrlVm GetConfig (hVm, &hVmCfg);
if (PRL_FAILED (ret))
{
// Handle the error.
}

// Create a virtual network adapter device handle.

PRL HANDLE hNet = PRL INVALID HANDLE;

ret = PrlVmCfg CreateVmDev (
hvmCfg, // The virtual machine configuration handle.
PDE_GENERIC NETWORK ADAPTER, // Device type.
&hNet); // Device handle.

if (PRLiFAILED(ret))
{

// Handle the error.
}

// Set the virtual network adapter emulation type (networking type) .
// Bridged networking is set using the PDT USE BRIDGE ETHERNET enumerator
// from the PRL VM DEV EMULATION TYPE enumeration.
ret = PrlVmDev SetEmulatedType (hNet, PDT USE BRIDGE ETHERNET) ;
if (PRL_FAILED (ret))
{
// Handle the error.
}

// Set the host adapter to which this adapter should be bound.
PrlvmDevNet SetBoundAdapterName (hNet, chHostAdapterName) ;

// By default, a new device is created disabled.

// You can set the "connected" and "enabled" properties
// as desired.

PrlvmDev SetConnected (hNet, PRL TRUE) ;

PrlVmDev SetEnabled (hNet, PRL TRUE) ;

// Commit the changes.

hJobCommit = PrlVm Commit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))

{

89

Parallels C API by Example

// Handle the error.
}

// Release all handles.
PrlHandle Free (hNet);
PrlHandle Free (hVmCfg) ;
PrlHandle Free (hJobBeginEdit) ;
PrlHandle Free (hJobCommit) ;

return PRL ERR SUCCESS;
}

Example 2:

This function shows how to add a virtual network adapter to a virtual machine and how to bind it to
the default adapter on the host.

PRL RESULT AddNetAdapterBridgedDefault (PRL HANDLE hVm)
{

PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;

PRL HANDLE hJobCommit = PRL INVALID HANDLE;

PRL HANDLE hVmCfg = PRL INVALID HANDLE;

PRL RESULT nJobRetCode = PRL INVALID HANDLE;

PRL UINT32 ret = PRL ERR UNINITIALIZED;

// Timestamp the beginning of the configuration changes operation.
// The hVm parameter specifies the target virtual machine.
hJobBeginEdit = PrlVm BeginEdit (hVm) ;
ret = PrlJob Wait (hJobBeginEdit, 10000) ;
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "Error: %$s\n", prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Obtain a handle of type PHT VM CONFIGURATION containing
// the virtual machine configuration information.
ret = Prlvm GetConfig (hVm, &hvVmCfqg);
if (PRL_FAILED (ret))
{
// Handle the error.
}

// Create a virtual network adapter device handle.

PRL HANDLE hNet = PRL INVALID HANDLE;

ret = PrlvmCfg CreateVmDev (
hvmCfg, // The virtual machine configuration handle.
PDE_GENERIC NETWORK ADAPTER, // Device type.
shNet); // Device handle.

if (PRL_FAILED (ret))
{

// Handle the error.
}

// Set the virtual network adapter emulation type (networking type).

// Bridged networking is set using the PDT USE BRIDGE ETHERNET enumerator
// from the PRL VM DEV EMULATION TYPE enumeration.

ret = PrlVmDev SetEmulatedType (hNet, PDT USE BRIDGE ETHERNET) ;

90

Parallels C API by Example

if (PRL_FAILED (ret))

{
// Handle the error.

}

// Set the host adapter index to -1. This will

// bind the virtual adapter to the default adapter on the
// host.

PrlvmDevNet SetBoundAdapterIndex (hNet, -1);

// By default, a new device is created disabled.

// You can set the "connected" and "enabled" properties
// as desired.

PrlvmDev SetConnected (hNet, PRL TRUE) ;

PrlVmDev SetEnabled (hNet, PRL TRUE) ;

// Commit the changes.

hJobCommit = PrlVm Commit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))

{
// Handle the error.

}

// Release all handles.
PrlHandle Free (hNet) ;
PrlHandle Free (hVvmCfg) ;
PrlHandle Free (hJobBeginEdit) ;
PrlHandle Free (hJobCommit) ;

return PRL ERR SUCCESS;

Managing User Access Rights
This topic applies to Parallels Server only,

User authorization (determining user access rights) is performed using OS-level file access
permissions. Essentially, a virtual machine is a set of files that a user can read, write, and execute.
When determining access rights of a user for a particular virtual machine, Parallels Service looks at
the rights the user has on the virtual machine files and uses this information to allow or deny
privileges. The Parallels Server Administration Guide has a section that describes the Parallels
Server tasks in relation to the file access rights. Using this information, you can determine the tasks
that a user is allowed to perform based on the file access rights the user has. The same goal can
also be accomplished programmatically through Parallels C API.

The Parallels C API contains a PHT ACCESS RIGHTS object that is used to manage user access
rights. A handle to it is obtained using the Pr1vmCfg GetAccessRights or the

PrlvmInfo GetAccessRights function. The difference between the two function is that
PrlvmInfo GetAccessRights takes an additional step: obtaining a handle of type
PHT VM INFO which will also contain the virtual machine state information. If user access rights is
all you need, you can use the Pr1vmCfg GetAccessRights function.

91

Parallels C API by Example

The PHT ACCESS RIGHTS object provides an easy way of determining access rights for the
currently logged in user with the Pr1Acl IsAllowed function. The function allows to specify one
of the available virtual machine tasks (defined in the PRL_ALLOWED VM COMMAND enumeration)
and returns a boolean value indicating whether the user is allowed to perform the task or not. The
security is enforced on the server side, so if a user tries to perform a tasks that he/she is not
authorized to perform, the access will be denied. You can still use the functionality described here
to determine user access rights in advance and use it in accordance with your client application
logic.

An administrator of the host has full access rights to all virtual machines. A non-administrative user
has full rights to the machines created by him/her and no rights to any other virtual machines by
default (these machines will not even be included in the result set when the user requests a list of
virtual machines from the host). The host administrator can grant virtual machine access privileges
to other users when needed. Currently, the privileges can be granted to all existing users only. It is
not possible to set access rights for an individual user through the API. The

PrlAcl SetAccessForOthers function is used to set access rights. The function takes the
PHT ACCESS RIGHTS object identifying the virtual machine and one of the enumerators from the
PRL VM ACCESS FOR_OTHERS enumerations identifying the access level, which includes view,
view and run, full access, and no access. Once again, the function sets access rights for all existing
users (the users currently present in the Parallels Service user registry (p. 43)). To determine the
current access level for other users on a particular virtual machine, use the

PrlAcl GetAccessForOthers function. For the complete set of user access management
functions, see the PHT ACCESS RIGHTS object description in the Parallels C API Reference
guide.

The following sample function demonstrates how to set virtual machine access rights and how to
determine access rights on the specified virtual machine for the currently logged in user. The
function accepts a virtual machine handle and operates on the referenced virtual machine.

PRL RESULT AccessRightsSample (PRL HANDLE hVm)
{
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hAccessRights = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Obtain a PHT VM CONFIGURATION handle.
PRL HANDLE hVmCfg = PRL INVALID HANDLE;
ret = PrlVm GetConfig (hVm, &hVmCfg);

// Obtain the access rights handle (this will be a
// handle of type PHT ACCESS RIGHTS) .
ret = PrlvmCfg GetAccessRights (hVvmCfg, &hAccessRights);
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hVmCfg) ;
return -1;

}

PrlHandle Free (hVmCfg) ;

92

Parallels C API by Example

// Get the VM owner name from the access rights handle.
PRL CHAR sBuf[1024];
PRL UINT32 nBufSize = sizeof (sBuf) ;
ret = PrlAcl GetOwnerName (hAccessRights, sBuf, &nBufSize);
if (PRLiFAILED(ret))
{
// Handle the error...
PrlHandle Free (hAccessRights);
return -1;
}

printf ("Owner: %$s\n", sBuf);

// Change the virtual machine access rights for other users
// to PAO_VM SHARED ON VIEW AND RUN, which means that the
// users will be able to see the machine in the list and to
// run it. When this operation completes, we will use
// PrlAcl IsAllowed function to determine whether the user
// 1is allowed to perform a particular task on the virtual
// machine.
PRL VM ACCESS FOR OTHERS access = PAO VM SHARED ON VIEW AND RUN;
ret = PrlAcl SetAccessForOthers (hAccessRights, access);
if (PRL_FAILED (ret))
{

// Handle the error...

return -1;

}

// Commit the changes.
hJob = PrlvVm UpdateSecurity (hVm, hAccessRights) ;
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;
}
// Analyze the result of PrlVm UpdateSecurity.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
PrlHandle Free (hJob) ;
if (PRL_FAILED(ret))
{
// Handle the error...
return -1;
}
// Check the job return code.
if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
return -1;

}

// Determine i1f the current user has the right to
// start the virtual machine.
PRL_ALLOWED_VM_COMMAND access_level = PAR_VM_START_ACCESS;
PRL BOOL isAllowed = PRL FALSE;
ret = PrlAcl IsAllowed (hAccessRights, access level, &isAllowed);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;
}
printf ("Can start: %d\n", isAllowed);

93

Parallels C API by Example

// Determine if the current user has the right to

// delete the specified virtual machine.

access_level = PAR VM DELETE ACCESS;

isAllowed = PRL FALSE;

ret = PrlAcl IsAllowed (hAccessRights, access level, &isAllowed);
if (PRL FAILED (ret))

{
// Handle the error...
return -1;

}
printf ("Can delete: %d\n", isAllowed) ;

PrlHandle Free (hAccessRights):;
return 0;

Working with Virtual Machine Templates

Templates are virtual machines that cannot be run but can be used as a patterns to create new
virtual machines. Virtual machine templates are not different from regular virtual machines except,
as was mentioned earlier, that they cannot be run. In fact, you can convert a template to a regular
virtual machine at any time, just as you can convert a regular virtual machine to a template.

The Parallels C API allows to perform the following template-related operations:

« Obtaining a list of the available virtual machine templates.
« Creating a virtual machine template from scratch.

« Converting a regular virtual machine to a template.

« Converting a template to a regular virtual machine.

« Creating a new virtual machine from a template.

The following subsections describes each operation in detail and provide code examples.

Obtaining a List of Templates

A list of virtual machines and virtual machine templates are obtained from the server using the same
function: Pr1srv GetvmList (p. 55). A template is identified by calling the

PrlvmCfg IsTemplate function which returns a boolean value indicating whether the specified
virtual machine handle contains information about a regular virtual or a handle. The value of

PRL_ TRUE indicates that the machine is a template. The value of PRL_FALSE indicates that the
machine is a regular virtual machine. The following sample is identical to the sample provided in the
Obtaining a List of Virtual Machines section (p. 55) with the exception that it was modified to
display only the lists of templates on the screen:

PRL RESULT GetTemplatelist (const PRL HANDLE &hServer)

{
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL HANDLE hJobResult = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

94

Parallels C API by Example

// Get a list of the available virtual machines.
hJob = PrlSrv GetVmList (hServer) ;

// Wait for a maximum of 10 seconds for PrlSrv GetVmList.
ret = PrlJob Wait (hJob, 10000);
if (PRL_FAILED (ret))
{
fprintf (stderr,
"PrlJob Wait for PrlSrv_GetVmList returned with error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob);
return ret;

}

// Check the results of PrlSrv GetVmList.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED(ret))
{
fprintf (stderr, "PrlJob GetRetCode returned with error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob);
return ret;

}

if (PRL_FAILED (nJobReturnCode))
{
fprintf (stderr, "PrlSrv GetVmList returned with error: $s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
return ret;

}

// Get the results of PrlSrv GetVmList.
ret = PrlJob GetResult (hJob, &hJobResult);
if (PRL_FAILED (ret))
{
fprintf (stderr, "PrlJob GetResult returned with error: %s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
return ret;

}

// Handle to result object is available,
// job handle is no longer needed, so free it.
PrlHandle Free (hJob) ;

// Iterate through the results (list of virtual machines returned).
PRL UINT32 nParamsCount = 0;
ret = PrlResult GetParamsCount (hJobResult, &nParamsCount);
for (PRL UINT32 i1 = 0; i < nParamsCount; ++i)
{
// Virtual machine handle
PRL HANDLE hVm = PRL INVALID HANDLE;

// Get a handle to result at index 1i.
PrlResult GetParamByIndex (hJobResult, i, &hVm);

// Obtain the PHT VM CONFIGURATION object.

PRL HANDLE hVmCfg = PRL INVALID HANDLE;
ret = PrlVm GetConfig (hVm, &hvVmCfg);

95

Parallels C API by Example

// See if the handle contains information about a template.
PRL_BOOL isTemplate = PRL_FALSE;
PrlvmCfg IsTemplate (hvmCfg, &isTemplate);

// If this is not a template, proceed to the next
// virtual machine in the list.
if (isTemplate == PRL_FALSE)
{
PrlHandle Free (hvmCfgq) ;
PrlHandle Free (hVm) ;
continue;

}

// Get the name of the template for result i.
char szVmNameReturned[1024];
PRL UINT32 nBufSize = sizeof (szVmNameReturned) ;
ret = PrlvmCfg GetName (hVmCfg, szVmNameReturned, &nBufSize);
if (PRL_FAILED (ret))
{
printf ("PrlvmCfg GetName returned with error (%s)\n",
prl result to string(ret));
}

else

{
printf ("Template name: '$s'.\n",
szVmNameReturned)

’

}

PrlHandle Free (hVm) ;
PrlHandle Free (hVmCfg) ;
}

return PRL ERR SUCCESS;
}

Creating a Template From Scratch

The steps in creating a new template and the steps in creating a new virtual machine are exactly
the same, with one exception: before registering a template with the Parallels Service, a call to
Pr1vmCfg SetTemplateSign function must be made passing the PRL_TRUE in the
bvmIsTemplate parameter. This will set a flag in the configuration structure indicating that you
want to create a template, not a regular virtual machine. The rest of the configuration parameters
are set exactly as they are set for a regular virtual machine. See the Creating a New Virtual
Machine section (p. 66) for the detailed information about creating a virtual machine.

The following example illustrates how to create a virtual machine template. For simplicity reasons,
we only set a template name in this example. The rest of the configuration parameters are omitted.
As a result, a blank template will be created. It still can be used to create new virtual machines from
it but you will not be able to run them until you configure them properly. Once again, the Creating a
New Virtual Machine section (p. 66) provides all the necessary information and code samples
needed to properly configure a virtual machine or a template.

PRL RESULT CreateTemplateFromScratch(PRL_HANDLE hServer)

{
PRL HANDLE hVm = PRL INVALID HANDLE;

PRL HANDLE hJob = PRL INVALID HANDLE;

96

Parallels C API by Example

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Create a new virtual machine handle.
ret = PrlSrv CreateVm(hServer, &hVm);
if (PRLiFAILED(ret))
{

// Handle the error...

return -1;

}

// Set the name for the new template.
ret = PrlvmCfg SetName (hvm, "A simple template");
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hVm) ;
return -1;

}

// Set a flag indicating to create a template.
PRL BOOL isTemplate = PRL_ TRUE;
ret = PrlvmCfg SetTemplateSign (hVm, isTemplate);
if (PRL_FAILED (ret))
{

// Handle the error...

PrlHandle Free (hVm) ;

return -1;

// Create and register the new template.
// The empty string in the configuration path
// indicates to create a template in the default
// virtual machine directory.
// The bNonInteractiveMode parameter indicates not to
// use interactive mode (the Service will not send questions
// to the client and will make all decisions on its own) .
PRL CHAR PTR sVmConfigPath = "";
PRL BOOL bNonInteractiveMode = PRL TRUE;
hJob = Prlvm Reg (hVvm, sVmConfigPath, bNonInteractiveMode) ;
// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hVm) ;
return -1;

}

// Rnalyze the result of PrlvVm Reg.
ret = PrlJob GetRetCode (hJob, &nJobReturnCode) ;
if (PRL_FAILED (ret))
{
// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hVm) ;
return -1;
}
// Check the job return code.

97

Parallels C API by Example

if (PRL_FAILED (nJobReturnCode))
{
// Handle the error...
PrlHandle Free (hJob);
PrlHandle Free (hVm) ;
return -1;
}
PrlHandle Free (hJob) ;
PrlHandle Free (hVm) ;
return 0;

}

Converting a Regular Virtual Machine to a Template

Any registered virtual machine can be converted to a template. This task is accomplished by
modifying the virtual machine configuration. Only a single parameter must be modified: a flag
indicating whether the machine is a regular virtual machine or a template, the rest will be handled
automatically and transparently to you on the server side. The name of the function that allows to
modify this parameter is Pr1vm SetTemplateSign.

The following code example illustrates how to convert a regular virtual machine to a template. Note
that any of the virtual machine (or a template) configuration changes must begin with the

Prl1vm BeginEdit and end with the Pr1vm BeginCommit function call. You should already
know that these two functions are used to prevent collisions with other clients trying to modify the
configuration of the same virtual machine or template at the same time.

PRL RESULT ConvertVMtoTemplate (PRL HANDLE hVm)

{
PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;

// Begin of the VM configuration changes operation.

hJobBeginEdit = PrlVm BeginEdit (hVm) ;

ret = PrlJob Wait (hJobBeginEdit, 10000) ;

if (PRL_FAILED (ret))

{
// Handle the error...
PrlHandle Free (hJobBeginEdit) ;
return -1;

}

ret = PrlJob GetRetCode (hJobBeginEdit, &nJobReturnCode) ;

if (PRL_FAILED (ret))

{
// Handle the error...
PrlHandle Free (hJobBeginEdit) ;
return -1;

}

// Check the job return code.

if (PRL_FAILED (nJobReturnCode))

{
// Handle the error...
PrlHandle Free (hJobBeginEdit) ;
return -1;

}

PrlHandle Free (hJobBeginEdit) ;

98

Parallels C API by Example

}

// Set a flag in the virtual machine configuration

// indicating that we want it to become a template.

PRL BOOL isTemplate = PRL_ TRUE;
ret = PrlvmCfg SetTemplateSign (hVm, isTemplate);
if (PRL_FAILED (ret))
{
// Handle the error...
return -1;

}

// Commit the changes.
hJobCommit = PrlVm Commit (hVm) ;
// Check the results of the commit operation.
ret = PrlJob Wait (hJobCommit, 10000) ;
if (PRL_FAILED(ret))
{
// Handle the error...
PrlHandle Free (hJobCommit) ;
return -1;

}

ret = PrlJob GetRetCode (hJobCommit, &nJobReturnCode) ;

if (PRL_FAILED (ret))

{
// Handle the error...
PrlHandle Free (hJobCommit) ;
return -1;

}

// Check the job return code.

if (PRL_FAILED (nJobReturnCode))

{
// Handle the error...
PrlHandle Free (hJobCommit) ;
return -1;

}

PrlHandle Free (hJobCommit) ;

return 0;

Converting a Template to a Regular Virtual Machine

Converting a template to a regular virtual machine is no different than converting a virtual machine
to a template (see the previous section for the description and an example). Simply set the boolean

parameter in the Pr1vmCfg SetTemplateSign function to PRL FALSE and leave the rest of

the sample code the same.

99

Parallels C API by Example

Creating a New Virtual Machine From a Template.

The primary purpose of templates is to be used as patterns to create new virtual machines. New
virtual machines are created from templates using the cloning functionality. We've already
discussed how to clone a virtual machine in the Cloning a Virtual Machine section (p. 75). The
truth is, creating a virtual machine from a template is at all different than creating a clone of a virtual
machine. The Pr1vm Clone function that clones a virtual machine can also be used to create
virtual machines from templates. The function has a boolean parameter that allows to specify
whether a virtual machine or a template should be created. The following is almost the same
example that we used in the Cloning a Virtual Machine section (p. 75) but this time we are setting
the bCreateTemplate parameter to PRL TRUE, thus creating a template instead of a regular
virtual machine.

PRL RESULT CreateVmFromTemplate (PRL_ HANDLE hVm)

{
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL RESULT nJobReturnCode = PRL ERR UNINITIALIZED;
PRL RESULT ret = PRL ERR UNINITIALIZED;

// Declare and populate variables that
// will be used as input parameters
// in the function that clones a VM.

// Virtual machine name.

// Get the name of the original VM (template) and use
// it in the new virtual machine name. You can

// use any name that you like of course.

char vm name[1024];

PRL UINT32 nBufSize = sizeof (v name) ;

ret = PrlVmCfg GetName (hVm, vm name, &nBufSize);

char new vm name[1024] = "Created from template ";
strcat (new _vm name, vm name) ;

// Name of the target directory on the

// host.

// Empty string indicates that the default
// directory should be used.

PRL CHAR PTR new vm root path = "";

// Virtual machine or template?

// The cloning functionality allows to create

// a new virtual machine or a new template.

// True specifies to create a template.

// False indicates to create a virtual machine.

// We want to create a virtual machine here, so we
// set it to PRL FALSE.

PRL BOOL bCreateTemplate = PRL FALSE;

// Begin the cloning operation.
hJob = PrlVm Clone (hVm, new vm name, new vm root path, bCreateTemplate);
// Wait for the job to complete.
ret = PrlJob Wait (hJob, 1000) ;
if (PRL_FAILED(ret))
{

// Handle the error...

printf ("Error: (%s)\n",

prl result to string(ret));

100

Parallels C API by Example

101

CHAPTER 7

Events

In This Chapter

Receiving and HandliNng EVENES........iiiiii e 102
Responding to Parallels Service QUESTIONScoovvviiiiiii 104

Receiving and Handling Events

Parallels Service and all running virtual machines are constantly monitored for any changes in their
state and status. When something important changes, an event of the corresponding type is
triggered. A client program can receive the data describing the event and take appropriate action if
needed. Events are received asynchronously (it is not possible to receive event-related data on-
demand). All possible event types are defined in the PRL_EVENT TYPE enumeration. Most of them
are triggered automatically when the corresponding action takes place. Some event types are
generated in response to client requests and are used to pass the data to the client. For example,
the PET DSP EVT HW CONFIG CHANGED event triggers when the host configuration changes,
the PET DSP_EVT VM STOPPED event triggers when one of the virtual machines is stopped, etc.
On the other hand, an event of type PET DSP_EVT FOUND LOST VM CONFIG is generated in
response to the Pr1Srv_StartSearchvms function call and is used to pass the information
about unregistered virtual machines to the client (see Searching for Virtual Machines (p. 69) for
more info).

In order to receive an event notification, a client program needs an event handler. An event handler
(also called callback) is a function that you have to implement yourself. We've already discussed
event handlers and provided code samples in the Asynchronous Functions section (p. 20). If you
haven't read it yet, please do so now. To subscribe to event notifications, you must register your
event handler with the Service. This is accomplished using the Pr1Srv RegEventHandler
function. Once this is done, the event handler (callback) function will be called automatically by the
background thread every time it receives an event notification from the Service. The code inside the
event handler can then handle the event according to the application logic.

The following describes the general steps involved in handling an event in a callback function:

1 Determine if the notification received is an event (not a job, because event handlers are also
called when an asynchronous job begins). This can be accomplished using the
PrlHandle GetType function (determines the type of the handle received) and then
checking if the handle is of type PHT EVENT (not PHT JOB).

2 Determine the type of the event using the Pr1Event GetType function. Check the event type
against the PRL._EVENT TYPE enumeration. If it is relevant, continue to the next step.

Parallels C API by Example

3

If needed, you can use the Pr1Event GetIssuerType Of PrlEvent GetIssuerId
function to find out what part of the system triggered the event. This could be a host, a virtual
machine, an 1/O service, or a Web service. These are defined in the

PRL EVENT ISSUER TYPE enumeration.

If, in order to precess the event, you need a server handle, you can obtain it by using the
PrlEvent GetServer function.

A handle of type PHT EVENT received by the callback function may include event related data.
The data is included in the event object as a list of handles of type

PHT EVENT PARAMETER. You can usethe PrlEvent GetParamsCount function to
determine the number of parameters the event object contains. Some of the events simply
inform the client of a change and don't include any data. For example, the virtual machine state
change events (started, stopped, suspended, etc.) indicate that a virtual machine has been
started, stopped, suspended, and so forth. These events don't produce any data, so no event
parameters are included in the event object. The type of the data and the number of
parameters depends on the type of the event received. If you know that an event contains data
by definition, continue to the next step, if not, skip it.

This step applies only to the events that contain data. Iterate through the event parameters
calling the Pr1Event GetParam function in each iteration. This function obtains a handle of
type PHT EVENT PARAMETER which contains the parameter data. Use the functions of the
PHT EVENT PARAMETER handle to process the data as needed. In general, an event
parameter contains the following:

+ Parameter name. To retrieve the name, use the Pr1EvtPrm GetName function. This is an
internal name and is, most likely, not of any interest to a client application developer.

« Parameter data type. Depending on the event type, a parameter can be of any type defined
inthe PRL_PARAM FIELD DATA TYPE enumeration. To retrieve the parameter data type,
use the Pr1EvtPrm GetType function.

« Parameter value. Depending on the parameter data type, the value must be retrieved using
an appropriate function from the PHT EVENT PARAMETER handle. For example, a boolean
value must be retrieved using the Pr1EvtPrm ToBoolean function, the string value must
be retrieved using the Pr1EvtPrm_ ToString function, if a parameter contains a handle, it
must be obtained using the Pr1EvtPrm ToHandle, etc. The meaning of the value is
usually different for different event types. For the complete list of PHT EVENT PARAMETER
functions, please see the Parallels C APl Reference.

When finished, release the received event handle. This step is necessary regardless of if you
actually used the handle or not. Failure to release the handle will result in a memory leak.

The following is a simple event handler function that illustrates the implementation of the steps

described above. We are not including an example of how to register an event handler here, please
see the Asynchronous Functions section (p. 20) for that.

static PRL RESULT simple event handler (PRL HANDLE hEvent, PRL VOID PTR pUserData)

{

PRL RESULT ret = PRL ERR UNINITIALIZED;
PRL HANDLE TYPE nHandleType;

103

Parallels C API by Example

// Get the type of the handle recevied.

Prl

}

//
//
PRL
ret

//

swi

Handle GetType (hEvent, &nHandleType);

If this is a job, release the handle and exit.

It is up to you if you want to handle jobs and events in
the same callback function or if you want to do it in
separate functions. You can have as many event handlers
registered in your client program as needed.
(nHandleType == PHT JOB)

PrlHandle Free (hEvent);
return 0;

If it's not a job, then it is an event (PHT EVENT) .
Get the type of the event received.
_ EVENT TYPE eventType;

= PrlEvent GetType (hEvent, &eventType);

Check the type of the event received.
tch (eventType) {

case PET DSP_EVT VM STARTED:
// Handle the event here...
printf ("A virtual machine was started. \n");
break;

case PET DSP _EVT VM STOPPED:
// Handle the event here...
printf ("A virtual machine was stopped. \n");
break;

case PET DSP _EVT VM CREATED:
// Handle the event here...
printf ("A new virtual machine has been created. \n");
break;

case PET DSP EVT VM SUSPENDED:
// Handle the event here...
printf ("A virtual machine has been suspended. \n");
break;

case PET DSP EVT HW CONFIG CHANGED:
// Handle the event here...

printf ("Parallels Service configuration has been modified.

break;
default:
printf ("Unhandled event: %d\n", eventType) ;

Responding to Parallels Service Questions

\n") ;

One of the event types in the PRL_EVENT TYPE enumeration deserves special attention. This
event type is PET DSP _EVT VM QUESTION. While processing a task, a Parallels Service may
come to a situation that requires client input. For example, let's say that a client requested to create
a new virtual machine but specified the hard drive size larger than the free disk space available on
the host. Since virtual hard drives can dynamically allocate disk space, this is not necessarily a
reason to abort the operation. In such a case, the Service will pause the operation and will send a
question to the client requiring one of the two possible answers: "Yes, create the machine anyway"
or "Abort". The question is sent to the client as an event of type PET DSP_EVT VM QUESTION.
This section describes how to properly handle events of this type.

104

Parallels C API by Example

Handling of the event involves the following steps (we skip the general event handling steps
described in the previous section):

1 Obtaining a string containing the question. This is accomplished by making the
PrlEvent GetErrString function call.

2 Obtaining the list of possible answers. Answers are included as event parameters,
therefore they are retrieved using Pr1Event GetParamsCount and PrlEvent GetParam
functions as described in the previous section.

3 Selecting an answer. Every available answer has its own unique code which is included in the
corresponding event parameter.

4 Sending a response containing the answer back to the Service. This is performed in two steps:
first, the Pr1Event CreateAnswerEvent function is used to properly format the answer;
second, the answer is sent to the Service using the Pr1Srv SendAnswer function.

The following is a complete example that demonstrates how to handle events of type

PET DSP_EVT VM QUESTION and how to answer Service questions. In the example, we create
a blank virtual machine and try to add a virtual hard drive to it with the size larger than the free disk
space available on the physical drive. This will trigger an event on the server side and a question will
be sent to the client asking if we really want to create a drive like that. The virtual machine creation
operation will not continue unless we send an answer to the Service. We then send an answer and
the operation continues normally.

#include "Parallels.h"

#include "Wrappers/SdkWrap/SdkWrap.h"
#include <stdio.h>

#include <stdlib.h>

#ifdef WIN_
#include <windows.h>
#else

#include <unistd.h>
#endif

#define MY JOB TIMEOUT 10000 // Default timeout.
#define MY HDD SIZE 70*1024 // The size of the new hard drive.
#define MY STR BUF SIZE 1024 // The default string buffer size.

LILTTTTT07 7777077077777 7777777777777 7777777777777 7

// A helper function that will attempt to create a hard drive larger
// than the free space available, thus triggering an event on the

// server.

static PRL RESULT create big hdd(PRL HANDLE hVm) ;

// The callback function (event handler).
static PRLiRESULT Callback(PRLiHANDLE, PRLi\/OIDiPTR);

N YA

int main(int argc, char* argv[])
{
// Pick the correct dynamic library file depending on the platform.
#ifdef WIN
#define SDK LIB NAME "prl sdk.dll"

105

Parallels C API by Example

#elif defined(LIN)

#define SDK LIB NAME "libprl sdk.so"
#elif defined(MAC)

#define SDK LIB NAME "libprl sdk.dylib"
#endif

// Load the dynamic library.
if (PRL_FAILED (SdkWrap Load(SDK_LIB NAME)) &&
PRI, FATLED (SdkWrap Load("./" SDK LIB NAME)))

// Error handling goes here...
return -1;

}

PRL RESULT ret = PRL ERR UNINITIALIZED;

PRL RESULT err = PRL ERR UNINITIALIZED;

PRL RESULT rc = PRL ERR UNINITIALIZED;

PRL HANDLE hJob = PRL_ INVALID HANDLE;

PRL HANDLE hJobResult = PRL INVALID HANDLE;
PRL HANDLE hServer = PRL INVALID HANDLE;

// Initialize API library. In this example, we are initializing the

// API for Parallels Server.
// To initialize in the Parallels Desktop mode, pass PAM DESKTOP
// as the second parameter.
// To initialize for Parallels Workstation, pass PAM WORKSTATION.
// See the PRL APPLICATION MODE enumeration for other options.
err = PrlApi InitEx (PARALLELS API VER, PAM SERVER, 0, 0);
if (PRL_FAILED (err))
{

// Error handling goes here...

return -1;

}

// Create server object.
PrlSrv Create (&hServer) ;

// Log in.
hJob = PrlSrv Login (
hServer, // Server handle
"10.30.22.82", // Server IP address
"jdoe", // User
"secret", // Password
0, // Previous session ID
0, // Port number
0, // Timeout
PSL NORMAL SECURITY); // Security

ret = PrlJob Wait (hJob, MY JOB TIMEOUT) ;
PrlHandle Free (hJob) ;

if (PRL FAILED (ret))
{

fprintf (stderr, "PrlJob Wait for PrlSrv Login returned with error:

prl result to string(ret));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

106

$s\n",

Parallels C API by Example

// Rnalyze the result of PrlSrv_Login.
PRL RESULT nJobResult;
ret = PrlJob GetRetCode(hJob, &nJobResult);
if (PRL_FAILED(nJobResult))
{
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
printf ("Login job returned with error: %s\n",
prl result to string(nJobResult));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Create a new virtual machine.

PRL HANDLE hVm = PRL INVALID HANDLE;
PrlSrv CreateVm(hServer, &hvm);
Pr1lVvmCfg SetName (hVm, "My simple VM");

// Register the virtual machine with the Service
hJob = PrlVm Reg(hvm, "", PRL FALSE);
PrlJob Wait (hJob, MY JOB TIMEOUT) ;
PrlHandle Free (hJob) ;

// Register the event handler with the Service.
// The second parameter is a pointer to our callback function.
PrlSrv RegEventHandler (hServer, &callback, NULL);

// Try creating a virtual hard drive larger than the

// free space available (increase MY HDD SIZE value if needed) .
// This should produce an event that will

// contain a question from the Service.

// We create the drive using a simple helper function.

// The function is listed at the end of the example.
create big hdd (hVm) ;

//

// At this point, the background thread should call the
// callback function.

//

// We can now clean up and exit the program.

// Unregister the event handler and log off.

PrlSrv UnregEventHandler (hServer, &callback, NULL);
hJob = PrlSrv Logoff (hServer);

PrlJob Wait (hJob, MY JOB TIMEOUT) ;

PrlHandle Free(hJob);

PrlHandle Free(hServer);

PrlApi Deinit();

SdkWrap Unload() ;

return 0;

}
s

// The callback function implementation.
// The event handling is demonstrated here.

//
static PRL RESULT callback (PRL HANDLE hEvent, PRL VOID PTR pUserData)

107

Parallels C API by Example

108

PRL HANDLE TYPE nHandleType;
PrlHandle GetType (hEvent, &nHandleType) ;

// A callback function will be called more than once.
// It will be called for every job that we initiate and it
// will be called for the event that we intentionally trigger.
// In this example, we are interested in events only.
if (nHandleType != PHT EVENT)
{
return PrlHandle Free (hEvent);

}

// Get the type of the event received.
PRL_EVENT TYPE type;
PrlEvent GetType (hEvent, &type):;

// See if the received event is a "question".
if (type == PET_DSP_EVT VM QUESTION)
{

PRL UINT32 nParamsCount = 0;

PRL RESULT err = PRL ERR UNINITIALIZED;

// Extract the text of the question and display it on the screen.
PRL BOOL bIsBriefMessage = true;

char errMsg [MY STR BUF SIZE];

PRL UINT32 nBufSize = MY STR BUF SIZE;

PrlEvent GetErrString (hEvent, bIsBriefMessage, errMsg, &nBufSize);
printf ("Question: %s\n\n", errMsqg);

// Extract possible answers. They are stored in the
// hEvent object as event parameters.
// First, determine the number of parameters.
err = PrlEvent GetParamsCount (hEvent, &nParamsCount);
if (PRL_FAILED (err))
{

fprintf (stderr, "[3]%.8X: %s\n", err,

prl result to string(err));
PrlHandle Free (hEvent);
return err;

}

// Declare an array to hold the answer choices.
PRL UINT32 PTR choices =(PRL _UINT32 PTR)
malloc (nParamsCount * sizeof (PRL UINT32)) ;

// Now, itereate through the parameter list obtaining a
// handle of type PHT EVENT PARAMETER containing an individual
// parameter data.
for (PRL_UINT32 nParamIndex = 0; nParamIndex < nParamsCount; ++nParamIndex)
{
PRL HANDLE hParam = PRL INVALID HANDLE;
PRL RESULT err = PRL ERR UNINITIALIZED;

// The PrlEvent GetParam function obtains a handle of type
// PHT EVENT PARAMETER containing an answer choice.
err = PrlEvent GetParam(hEvent, nParamIndex, &hParam);
if (PRL_FAILED (err))
{
fprintf (stderr, "[4]1%.8X: %s\n", err,
prl result to string(err));

Parallels C API by Example

PrlHandle Free (hParam) ;
PrlHandle Free (hEvent) ;
return err;

}

// Get the answer description that can be shown to the user.
// First, obtain the event parameter value.
err = PrlEvtPrm ToUint32 (hParam, &choices[nParamIndex]) ;
if (PRLiFAILED(err))
{
fprintf (stderr, "[9]%.8X: %$s\n", err,
prl result to string(err));
PrlHandle Free (hParam) ;
PrlHandle Free (hEvent);
return err;
}
// Now, get the answer description using the
// event parameter value as input in the following call.
char sDesc [MY STR BUF SIZE];
err = PrlApi GetResultDescription (choices[nParamIndex], true,
sDesc, &nBufSize);
if (PRL_FAILED(err))
{
fprintf (stderr, "[8]%.8X: %s\n", err,
prl_result_to_string(err));
PrlHandle Free (hParam) ;
PrlHandle Free (hEvent);
return err;

}

// Display the answer choice on the screen.
printf ("Answer choice: %s\n", sDesc);
PrlHandle Free (hParam) ;

}

// Select an answer choice (we are simply using the "No"

// answer here) and create a valid answer object (hAnswer).

PRL HANDLE hAnswer = PRL INVALID HANDLE;

err = PrlEvent CreateAnswerEvent (hEvent, &hAnswer, choices([1]);

if (PRL_FAILED (err))

{
fprintf (stderr, "[A]%.8X: %$s\n", err, prl result to string(err));
PrlHandle Free (hEvent);
return err;

}

// Obtain a server handle. We need it to send an answer.
PRL HANDLE hServer = PRL INVALID HANDLE;
PrlEvent_GetServer(hEvent, &hServer) ;

// Send the handle containing the answer data to the Parallels Service.
PrlSrv_SendAnswer (hServer, hAnswer) ;

free (choices) ;
PrlHandle Free (hServer);
PrlHandle Free (hAnswer) ;
}
else // other event type

{
PrlHandle Free (hEvent);

109

Parallels C API by Example

return PRL ERR SUCCESS;
}

[ILTTTTT07 7777007707777 0777777777777 7777777777777 7

// A helper function that will attempt to crate a hard drive larger
// than the free space available, thus triggering an event.
PRL RESULT create big hdd(PRL HANDLE hvm)
{
PRL HANDLE hJobBeginEdit = PRL INVALID HANDLE;
PRL HANDLE hJobCommit = PRL INVALID HANDLE;
PRL HANDLE hJob = PRL INVALID HANDLE;
PRL RESULT nJobRetCode = PRL ERR UNINITIALIZED;
PRL RESULT err = PRL ERR UNINITIALIZED;

// Timestamp the beginning of the configuration changes operation.
hJobBeginEdit = PrlVm BeginEdit (hVm) ;
err = PrlJob7Wait(hJobBeginEdit, MY JOB TIMEOUT) ;
PrlJob GetRetCode (hJobBeginEdit, &nJobRetCode) ;
if (PRL_FAILED (nJobRetCode))
{
fprintf (stderr, "[B]%.8X: %s\n", nJobRetCode,
prl result to string(nJobRetCode)) ;
PrlHandle Free (hJobBeginEdit) ;
return nJobRetCode;

}

// Create a new device handle.

// This will be our new virtual hard disk.

PRL HANDLE hHDD = PRL INVALID HANDLE;

err = PrlvmCfg CreateVmDev (
hvm, // Target virtual machine.
PDE_HARD DISK, // Device type.
&hHDD); // Device handle.

// Set disk type to "expanding".
err = PrlVmDevHd SetDiskType (hHDD, PHD EXPANDING HARD DISK) ;

// Set max disk size, in megabytes.
err = PrlVmDevHd SetDiskSize (hHDD, MY HDD SIZE) ;

// This option determines whether the image file will be split
// into chunks or created as a single file.
err = PrlVmDevHd SetSplitted(hHDD, PRL FALSE);

// Choose and set the name for the new image file.
err = PrlVmDev SetFriendlyName (hHDD, "harddisk4.hdd");
err = PrlVmDev SetSysName (hHDD, "harddisk4.hdd");

// Set the emulation type.
err = PrlVmDev SetEmulatedType (hHDD, PDT USE IMAGE FILE) ;

// Enable the new disk on successful creation.
err = PermDev_SetEnabled(hHDD, PRL_TRUE);

// Create the new image file.

hJob = PrlVmDev CreatelImage (hHDD,
PRL TRUE, // Do not overwrite if file exists.
PRL FALSE); // Use non-interactive mode.

110

Parallels C API by Example

111

CHAPTER 8

Performance Statistics

Statistics about the CPU(s), memory, disk drives, processes, user session, system uptime, network
packets, etc. for a host or a virtual machine are available using the Parallels C API. There are two
main methods for obtaining statistics:

1 Using Prlsrv_GetStatistics (for host statistics) or Privm GetStatistics (for virtual
machine statistics) to obtain a report containing the latest performance data. In addition, the
virtual machine disk /O statistics can be obtained using the Pr1vm GetPerfStats function.

2 Using Prlsrv SubscribeToHostStatistics (for host statistics) or
Prlvm SubscribeToGuestStatistics (for virtual machine statistics) to receive statistics
on a periodic basis.

The following sections describe each method in detalil.

In This Chapter

Obtaining Performance StatiStiCS.......cooiiiiiiiiiiiiiii e 112
Performance MONITOMNGiei i e e 116

Obtaining Performance Statistics

The first step required to obtain performance statistics is to obtain a handle of type
PHT SYSTEM STATISTICS:

1 CallPrl1Srv GetStatistics Or PrlVm GetStatistics. This will return ajob (PHT JOB)
reference.

Get the job result (a reference to an object of type PHT RESULT) using Prl1Job GetResult.

Get the handle to the PHT SYSTEM STATISTICS object using PrlResult GetParam
(there will be only one parameter returned).

Functions that can be used to extract statistics data from a PHT SYSTEM STATISTICS handle
can be found in the C API Reference under the following sections:

C API Reference Section Description

PHT_SYSTEM_STATISTICS Functions to drill degper into specific system
statistics. As an example, to use functions that
return CPU statistics, a handle of type

PHT SYSTEM STATISTICS CPU will be
required. This handle can be obtained using
PrlStat GetCpuStat.

Functions that return memory statistics are also
grouped here.

Parallels C API by Example

PHT_SYSTEM_STATISTICS_CPU

Functions that provide CPU statistics data.

PHT_SYSTEM_STATISTICS_DISK

Functions that provide hard disk statistics data.

PHT_SYSTEM_STATISTICS_DISK_PARTITION

Functions that provide statistics data for a disk
partition.

PHT_SYSTEM_STATISTICS_IFACE

Functions that provide statistics data for a
network interface.

PHT_SYSTEM_STATISTICS_PROCESS

Functions that provide statistics data about
processes that are running.

PHT_SYSTEM_STATISTICS_USER_SESSION

Functions that provide statistics data about a

user session.

The following code example will display CPU usage, used RAM, free RAM, used disk space, and
free disk space using the first method (Pr1Srv GetStatistics):

// Obtain host statistics (PHT SYSTEM STATISTICS handle), and wait for a
// maximum of 10 seconds for the asynchronous call PrlSrv GetStatistics to complete.
// Note: PrlVm GetStatistics (hVm) could be used instead of
// PrlSrv_GetStatistics (hServer) if statistics are required for a
// virtual machine that is running.
PRL HANDLE hServerStatisticsJob = PrlSrv GetStatistics (hServer);
PRL RESULT nServerStatistics = PrlJob Wait (hServerStatisticsJob, 10000) ;
if (PRL_FAILED (nServerStatistics))
{

printf ("PrlSrv_GetStatistics returned error: %$s\n",

prl result to string(nServerStatistics));

PrlHandle Free (hServerStatisticsJob);

PrlHandle Free (hServer);

PrlApi Deinit();

SdkWrap Unload() ;

return -1;

}

// Check that the job (call to PrlSrv GetStatistics) was successful.
PrlJob GetRetCode (hServerStatisticsJob, &nServerStatistics);
if (PRL_FAILED (nServerStatistics))
{

printf ("PrlSrv_GetStatistics returned error: %$s\n",

prl result to string(nServerStatistics));

PrlHandle Free (hServerStatisticsJob);

PrlHandle Free (hServer);

PrlApi Deinit();

SdkWrap Unload() ;

return -1;

}

// Extract the result (PHT RESULT handle) for the job.
PRL HANDLE hResult = PRL INVALID HANDLE;
nServerStatistics = PrlJob GetResult (hServerStatisticsJob, &hResult);
if (PRL_FAILED (nServerStatistics))
{
printf ("PrlJob GetResult returned error: %$s\n",
prl result to string(nServerStatistics));
PrlHandle Free (hServerStatisticsJob);
PrlHandle Free (hServer);
PrlApi Deinit () ;
SdkWrap Unload() ;
return -1;

113

Parallels C API by Example

}

// Get the result (PHT SYSTEM STATISTICS handle) .
PRL HANDLE hServerStatistics = PRL INVALID HANDLE;
PrlResult GetParam(hResult, &hServerStatistics);

PRL HANDLE hCpuStatistics = PRL INVALID HANDLE;
ret = PrlStat GetCpuStat (hServerStatistics, 0, &hCpuStatistics);
if (PRL FAILED (ret))
{
printf ("PrlStat GetCpuStat returned error: %$s\n",
prl result to string(ret));
// Clean up and exit here.

}

// Get CPU usage data (% used).

PRL UINT32 nCpuUsage = 0;

PrlstatCpu GetCpuUsage (hCpuStatistics, &nCpuUsage) ;
printf ("CPU usage: %d%%\n", nCpuUsage) ;

// Get memory statistics.

PRL UINT64 nUsedRam, nFreeRam;

PrlStat GetFreeRamSize (hServerStatistics, &nFreeRam);

PrlStat GetUsageRamSize (hServerStatistics, &nUsedRam) ;

printf ("Used RAM: %I64d MB\nFree RAM: %I64d MB\n",
nUsedRam/1024/1024, nFreeRam/1024/1024) ;

// Get disk statistics.

PRL UINT64 nFreeDiskSpace, nUsedDiskSpace;

PRL HANDLE hDiskStatistics = PRL INVALID HANDLE;

PrlStat GetDiskStat (hServerStatistics, 0, &hDiskStatistics);

PrlStatDisk GetFreeDiskSpace (hDiskStatistics, &nFreeDiskSpace);

PrlstatDisk GetUsageDiskSpace (hDiskStatistics, &nUsedDiskSpace) ;

printf ("Used Disk Space: %$I64d MB\nFree Disk Space: %I64d MB\n",
nUsedDiskSpace/1024/1024, nFreeDiskSpace/1024/1024) ;

PrlHandle Free (hDiskStatistics):;
PrlHandle Free (hCpuStatistics);
PrlHandle Free (hResult);
PrlHandle Free (hServerStatistics);
PrlHandle Free (hServerStatisticsJob);

Obtaining Disk I/O Statistics

The virtual machine disk I/O statistics are obtained using the Pr1vm GetPerfStats function.
The function is a part of the PHT VIRTUAL MACHINE handle.

The Pr1vm GetPerfStats function obtains a handle of type PHT EVENT. The objects
referenced by PHT EVENT handle can contain one or more PHT EVENT PARAMETER objects,
each of which is used as a container for a particular type of performance statistics. Statistics are
identified by a corresponding performance counter which name is also contained in the

PHT EVENT PARAMETER container. The following disk I/O performance counters are available:

Counter Name Description
PRL_IDE READ REQUESTS_ PTRN Total count of read requests to IDE controller.
PRL_IDE_READ_TOTAL_PTRN Total count of bytes read through IDE controller.

114

Parallels C API by Example

PRL_IDE_WRITE_REQUESTS_PTRN Total count of write requests to IDE controller.
PRL_IDE_WRITE_TOTAL_PTRN Total count of bytes written through IDE controller.
PRL_SCSI_READ_REQUESTS_PTRN Total count of read requests to SCSI controller.
PRL_SCSI_READ_TOTAL_PTRN Total count of bytes read through SCSI controller.
PRL_SCSI_WRITE_REQUESTS_PTRN Total count of write requests to SCSI controller.
PRL SCSI WRITE TOTAL PTRN Total count of bytes written through SCSI controller.
PRL_SATA READ REQUESTS PTRN Total count of read requests to SATA controller.
PRL SATA READ TOTAL PTRN Total count of bytes read through SATA controller.
PRL_SATA WRITE_ REQUESTS_PTRN Total count of write requests to SATA controller.
PRL_SATA WRITE_TOTAL_PTRN Total count of bytes written through SATA controller.
Example

The following example shows how to obtain the virtual machine disk I/O statistics.

PRL HANDLE hVm, hJob, hResult, hEvent, hPerfCounter;

// Obtain performance statistics.

// In this example, we are getting the total count of read

// requests to IDE controller by passing the corresponding

// performance counter name. The performance counter names are
// defined in the PrlPerfCounters.h header file.

hJob = PrlVm GetPerfStats (hVm, PRL IDE READ REQUESTS PTRN) ;

// Wait for the job to complete.
PrlJob Wait (hJob, 15000) ;

// Obtain the PHT RESULT object from the job.
PrlJob GetResult (hJob, &hResult);

// Obtain the PHT EVENT object from the result.
PrlResult GetParam(hResult, &hEvent);

// Get the PHT EVENT PARAMETER object containing
// the actual performance counter value.
PrlEvent GetParam(hEvent, 0, &hPerfCounter):;

// Get the performance counter value.
PRL UINT32 nValue;
PrlEvtPrm ToInt32 (hPerfCounter, &nValue);

// Process the nValue here...

115

Parallels C API by Example

Performance Monitoring

To monitor the host or a virtual machine performance on a periodic basis, an event handler
(callback function) is required. Within the event handler, first check the type of event. Events of type
PET DSP EVT HOST STATISTICS UPDATED indicate an event containing statistics data. To
access the statistics handle (a handle of type PHT SYSTEM STATISTICS), first extract the event
parameter using Pr1Event GetParam, then convert the result (which will be a handle to an
object of type PHT EVENT PARAMETER)to a handle using Pr1EvtPrm ToHandle. The
functions that operate on PHT SYSTEM STATISTICS references can then be used to obtain
statistics data.

For the event handler to be called, it is necessary to register it with Pr1Srv_RegEventHandler.
Before the event handler will receive statistics events, the application must subscribe to statistics
events using Pr1Srv_SubscribeToHostStatistics. When statistics data is no longer
required, unsubscribe from statistics events using

Prlsrv UnsubscribeFromHostStatistics. When events are no longer required, unregister
the event event handler using Pr1Srv_UnregEventHandler.

The following is a complete example that demonstrates how to obtain statistics data
asynchronously using Pr1Srv_SubscribeToHostStatistics. Note that the same code could
be used to receive statistics data for a virtual machine, instead of the host computer, by using
PrlvVm SubscribeToGuestStatistics instead of
PrlSrv_SubscribeToHostStatistics, and passing it a handle to a virtual machine that is
running. This would also require using Pr1vm UnsubscribeFromGuestStatistics to stop
receiving statistics data for the virtual machine.

#include "Parallels.h"

#include "Wrappers/SdkWrap/SdkWrap.h"
#include <stdio.h>

#ifdef WIN
#include <windows.h>

#else

#include <unistd.h>

#endif

const char *szServer = "123.123.123.123";

const char *szUsername = "Your Username";

const char *szPassword = "Your Password";

A e
// Event handler.

/R
// 1. Check for events of type PET DSP EVT HOST STATISTICS UPDATES.

// 2. Display a header if first call to this event handler.

// 3. Get the event param (PHT_EVENT_PARAMETER) from the PHT EVENT handle.
// 4. Convert event param to a handle (will be type PHT SYSTEM STATISTICS) .
// 5. Use PHT SYSTEM STATISTICS handle to obtain CPU usage, memory usage,

// and disk usage data.

static PRL RESULT OurCallback (PRL HANDLE handle, void *pData)
{

116

Parallels C API by Example

PRL HANDLE TYPE nHandleType;
PRL RESULT ret = PrlHandle GetType (handle, &nHandleType);
// Check for PrlHandle GetType error here.

if (nHandleType == PHT EVENT)
{
PRL EVENT TYPE EventType;
PrlEvent GetType (handle, &EventType) ;

// Check if the event type is a statistics update.
if (EventType == PET DSP EVT HOST STATISTICS UPDATED)
{
// Output a header if first call to this function.
static PRL BOOL bHeaderHasBeenPrinted = PRL FALSE;
if (!bHeaderHasBeenPrinted)
{
bHeaderHasBeenPrinted = PRL TRUE;
printf ("CPU (%%) Used RAM (MB) Free RAM (MB) Used Disk Space (MB)"
" Free Disk Space (MB)\n");
printf ("---—7----"-"-"""-"""""""""""""""""""""""""—

PRL HANDLE hEventParameters = PRL INVALID HANDLE;

PRL HANDLE hServerStatistics = PRL INVALID HANDLE;

// Get the event parameter (PHT EVENT PARAMETER) from the event handle.
PrlEvent GetParam(handle, 0, &hEventParameters);

// Convert the event parameter to a handle (PHT SYSTEM STATISTICS) .
PrlEvtPrm ToHandle (hEventParameters, &hServerStatistics);

// Get CPU statistics (usage in %).

PRL HANDLE hCpuStatistics = PRL INVALID HANDLE;

ret = PrlStat GetCpuStat (hServerStatistics, 0, &hCpuStatistics);
PRL UINT32 nCpuUsage = 0;

ret = PrlStatCpu GetCpuUsage (hCpuStatistics, &nCpuUsage);

// Get RAM statistics.

PRL UINT64 nUsedRam, nFreeRam;

Prlstat GetFreeRamSize (hServerStatistics, &nFreeRam);
PrlStat GetUsageRamSize (hServerStatistics, &nUsedRam) ;
nUsedRam /= (1024 * 1024);

nFreeRam /= (1024 * 1024);

// Get disk space statistics.

PRL UINT64 nFreeDiskSpace, nUsedDiskSpace;

PRL HANDLE hDiskStatistics = PRL INVALID HANDLE;

Prlstat GetDiskStat (hServerStatistics, 0, &hDiskStatistics);
PrlStatDisk GetFreeDiskSpace (hDiskStatistics, &nFreeDiskSpace);
PrlStatDisk GetUsageDiskSpace (hDiskStatistics, &nUsedDiskSpace) ;
nUsedDiskSpace /= (1024 * 1024);

nFreeDiskSpace /= (1024 * 1024);

printf ("$7d %$1011d %$1311d %2011d %2011d\n",
nCpuUsage, nUsedRam, nFreeRam, nUsedDiskSpace, nFreeDiskSpace) ;

PrlHandle Free (hDiskStatistics):;
PrlHandle Free (hCpuStatistics);
PrlHandle Free (hServerStatistics);
PrlHandle Free (hEventParameters);

117

Parallels C API by Example

PrlHandle Free (handle);

return PRL ERR SUCCESS;

[mmmmemrmmmmm e s mmm e e e e e e e e o o o e e e e o e e e S S D S S = o=
// Program entry point.

[==—mmmmmes e e e e s e e s e e e s e e e e S S e S S e S TS S S s S eSS S s S T e T e s e e e
// 1. Call SdkWrap Load(SDK _LIB NAME) .

// 2. Call PrlApi InitEx().

// 3. Create a PRL SERVER handle using PrlSrv_Create.

// 4. Log in using PrlSrv_Login.

// 5. Register our event handler (OurCallback function).

// 6. Subscribe to host statistics events.

// 7. Keep receiving events until user presses <enter> key.

// 8. Unsubscribe from host statistics events.

// 9. Un-register our event handler.

// 10. Logoff using PrlSrv_Logoff.
// 11. Call PrlApi Uninit.
// 12. Call SdkWrap Unload.

int main(int argc, char* argv(])

{
PRL HANDLE hServer = PRL INVALID HANDLE;
PRL RESULT ret;

// Use the correct dynamic library depending on the platform.
#ifdef WIN

#define SDK LIB NAME "prl sdk.dll"

#elif defined(LIN)

#define SDK LIB NAME "libprl sdk.so"

#elif defined(MAC)

#define SDK LIB NAME "libprl sdk.dylib"

#endif

// Try to load the SDK library, terminate on failure to do so.
if (PRL_FAILED (SdkWrap Load(SDK LIB NAME)) &&
PRL FAILED (SdkWrap Load("./" SDK LIB NAME)))

fprintf (stderr, "Failed to load " SDK LIB NAME "\n");
return -1;

// Initialize the Parallels API. In this example, we are initializing the
// API for Parallels Server.
// To initialize in the Parallels Desktop mode, pass PAM DESKTOP
// as the second parameter.
// To initialize for Parallels Workstation, pass PAM WORKSTATION.
// See the PRL APPLICATION MODE enumeration for other options.
ret = PrlApi InitEx (PARALLELS API VER, PAM SERVER, 0, 0);
if (PRL FAILED (ret))
{

fprintf (stderr, "PrlApi InitEx returned with error: %s.\n",

prl result to string(ret));

PrlApi Deinit();

SdkWrap Unload() ;

return ret;

118

Parallels C API by Example

// Create a PHP SERVER handle.
ret = PrlSrv Create (&hServer);
if (PRL_FAILED(ret))
{
fprintf (stderr, "PrlSvr Create failed, error: %s",
prl result to string(ret));
PrlHandle Free (hServer);
PrlApi Deinit () ;
SdkWrap Unload() ;
return -1;

}

// Log in (PrlSrv is asynchronous) .
PRL HANDLE hJob = PrlSrv Login (

hServer, // PRL HANDLE of type PHT SERVER.

szServer, // Host name or IP address.

szUsername, // Username.

szPassword, // Password.

0, // Deprecated - UUID of previous session.

0, // Optional - port number (0 for default).
0, // Optional - timeout value (0 for default).

PSL_LOW_SECURITY); // Security level (can be PSL_LOW_SECURITY,
PSL_NORMAL SECURITY, or PSL HIGH SECURITY).

// Wait for a maximum of 10 seconds for
// asynchronous function PrlSrv Login to complete.
ret = PrlJob Wait (hJob, 1000);
if (PRLiFAILED(ret))
{
fprintf (stderr, "PrlJob Wait for PrlSrv Login returned with error: %$s\n",
prl result to string(ret));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Analyze the result of PrlSrv_Login.
PRL RESULT nJobResult;
ret = PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRL_FAILED (nJobResult))
{
printf ("Login job returned with error: %$s\n",
prl result to string(nJobResult));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

V] oo s e o o o o o o e o o o o e o o o 0 o 0 5 0 5 5 0 D S D B S D S S D S S e DS S e o
// 1. Register our event handler (OurCallback function).

// 2. Subscribe to host statistics events.

// 3. Keep receiving events until user presses <enter> key.

// 4. Unsubscribe from host statistics events.

// 5. Un-register out event handler.

V] oo mom om0 0 5 e 0 e 0 5 0 5 0) 5 0 S 5 5 0 D D D S S S S S

Parallels C API by Example

120

Prl1Srv_RegEventHandler (hServer, OurCallback, NULL);
PrlSrv_SubscribeToHostStatistics (hServer) ;

char c;

scanf (&c, 1);
PrlSrv_UnsubscribeFromHostStatistics (hServer) ;

PrlSrv UnregEventHandler (hServer, OurCallback, NULL) ;

// Log off.

hJob = PrlSrv Logoff (hServer);

ret = PrlJob Wait (hJob, 1000);

if (PRL_FAILED (ret))

{
fprintf (stderr, "PrlJob Wait for PrlSrv Logoff returned error: %$s\n",

prl result to string(ret));

PrlHandle Free (hJob);
PrlHandle Free (hServer);
PrlApi Deinit () ;
SdkWrap Unload() ;
return -1;

}

ret = PrlJob GetRetCode (hJob, &nJobResult) ;
if (PRLiFAILED(ret))
{

fprintf (stderr, "PrlJob GetRetCode failed for PrlSrv Logoff with error:

prl result to string(ret));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;

}

// Report success or failure of PrlSrv_Logoff.
if (PRL_FAILED (nJobResult))
{
fprintf (stderr, "PrlSrv Logoff failed with error: $s\n",
prl result to string(nJobResult));
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);
PrlApi Deinit();
SdkWrap Unload() ;
return -1;
}
else
printf ("Logoff was successful.\n");

// Free handles that are no longer required.
PrlHandle Free (hJob) ;
PrlHandle Free (hServer);

// De-initialize the Parallels API, and unload the SDK.
PrlApi Deinit();
SdkWrap Unload() ;

return 0;

%s\n",

Parallels C API by Example

Encryption Plug-in

A Parallels virtual machine can be encrypted to make its files unreadable to anyone except those
authorized to do so. When configuring a virtual machine, you have an option to encrypt its files if
desired. When this option is selected, the user is asked to enter a password and then the virtual
machine files are encrypted using an encryption algorithm. Once this is done, the virtual machine
cannot be started without providing the correct password and its files cannot be read using
standard Parallels or third party utilities. An encryption module is provided by Parallels and is built
into the Parallels Desktop. The built-in module uses a sufficiently strong and fast encryption
algorithm. If, however, you would like to use your own (or third-party) encryption module, the
Parallels Virtualization SDK provides an API that allows to custom built an encryption plug-in and
then use it instead of the built-in one. The following sub-sections describes how to build and use
such a plug-in.

Encryption Plug-in Basics

To build and use an encryption plug-in you have to perform the following steps:

—

Develop a plug-in according to specifications provided here and build it as a dynamic library.

N

Place the dynamic library file into designated directory, which is created automatically when you
install Parallels Desktop; then set the necessary permissions for the file.

Enable the third-party plug-in support in Parallels Desktop preferences.

The Parallels Desktop will recognize and load the plug-in. The plug-in will then appear in the list
of the encryption engines available for encrypting a virtual machine.

All of the steps above are discussed in detail in the following sub-sections.

Please note that developing an encryption plug-in is different than developing applications described
earlier in this guide. All you need to know about developing an encryption plug-in is contained in this
portion of the guide.

The Encryption API Reference

The encryption plug-in is designed using the Component Object Model (COM) principles. A plug-in
is a component (class) identified by class ID, which is a globally unique identifier (GUID). The
component exposes its functionality through interfaces. Each interface provided by the component
is also identified by a GUID. The access to the component is done through methods of the
interfaces. The encryption plug-in interfaces are defined in the Pr1PluginClasses.h header file,
which is included in the Parallels Virtualization SDK. Developing a plug-in involves implementing the
component, the interfaces, and a number of functions (some optional, some mandatory) that have
to be exported from the dynamic library. This section provides a reference information. For a
sample plug-in implementation please refer to the Implementing a Plug-in section (p. 124).

121

Parallels C API by Example

Constants

PRL_CLS_NULL is a constant that defines the NULL GUID used as a terminator in the interfaces
array (the array is used to hold the list of the interfaces supported by the component and is
declared and populated in the plug-in implementation).

static const PRL_GUID PRL CLS NULL = { O, O, O, { O, O, O, O, O, O, O, O } };

PRL_CLS_BASE is a constant that defines the GUID of the base interface. The base interface
provides access to the base plug-in functionality, such as creating objects, getting the plug-in info,
and memory management. The base interface name is Pr1Plugin and it's described later in this
section.

static const PRL GUID PRL CLS BASE = { 0x823067ea, 0x8el5, 0x474f,

{ 0xa3, Oxae, 0Oxc6, 0xa0O, 0x68, 0x46, 0x12, O0x56 } };
#define GUID CLS BASE STR "{823067ea-8el5-474f-a3ae-c6a068461256}"

PRL_CLS_ENCRYPTION is a constant that defines the encryption interface GUID. The encryption
interface provides access to the data encryption functionality. The encryption component name is
PrlCrypt and it's described later in this section.

static const PRL GUID PRL CLS ENCRYPTION = { 0x564820fc, 0Oxe265, 0x4d69,
{ 0x9f, 0xb0O, 0x3d, 0x18, 0x39, Ox6f, 0x1f, 0x8d } };
#define GUID CLS ENCRYPTION STR "{564820fc-e265-4d69-9fb0-3d18396£f1£8d}"

Structures

IPlugininfo is a structure that's used to hold general plug-in information.

typedef struct IPluginInfo
{
PRL STR Vendor; // Vendor info.
PRL STR Copyright; // Copyright info.
PRL STR DescShort; // Short description.
PRL STR DesclLong; // Long description.
PRL UINT32 Major; // Major version number.

PRL UINT32 Minor; // Minor version number.
PRL UINT32 Build; // Build number.
PRL GUID Type; // Plug-in GUID.

} PRL STRUCT (IPluginInfo) ;

typedef IPluginInfo* IPluginInfoPtr;

ICryptinfo is a structure that's used to hold the plug-in info (P1uginInfo) together with the key
and block size values used for data encryption.

typedef struct ICryptInfo
{
IPluginInfo PluginInfo;
PRL UINT32 KeySize;
PRL UINT32 BlockSize;
} PRL STRUCT (ICryptInfo);
typedef ICryptInfo* ICryptInfoPtr;

Interfaces

PriPlugin is an interface that provides access to the base plug-in functionality, such as creating
objects, getting the plug-in info, and memory management.

122

Parallels C API by Example

typedef struct PrlPlugin

{
// Releases the memory occupied by the structure.
void (PRL CALL *Release) (struct PrlPlugin* self);

// Creates a specified interface.
// This method is called by Parallels Service to create
// the base and encryption interfaces.
// The Class parameter specifies the GUID of
// the interface to create: PRL_CLS BASE or PRL_CLS ENCRYPTION.
// The obj parameter receives a reference to the created interface.
PRL RESULT (PRL CALL *QueryInterface) (struct PrlPlugin* self,
PRL GUID* Class, PRL VOID PTR PTR obj);

// Obtains a reference to the IPluginInfo structure containing the

// plug-in info.

PRL RESULT (PRL CALL *GetInfo) (struct PrlPlugin* self, IPluginInfoPtr Info);
} PRL_STRUCT (PrlPlugin)

PriCrypt is an interface that provides access to the data encryption functionality.

typedef struct PrlCrypt
{

// Inheritance from PrlPlugin.
struct PrlPlugin Plugin;

// Initializes the encryption engine.
PRL RESULT (PRL CALL *Init) (struct PrlCrypt* self);

// Encrypts the supplied data block.
PRL RESULT (PRL CALL *Encrypt) (struct PrlCrypt* self, PRL VOID PTR Data,
const PRL UINT32 Size, const PRL UINT8 PTR V) ;

// Decrypts the supplied data block.
PRL RESULT (PRL CALL *Decrypt) (struct PrlCrypt* self, PRL VOID PTR Data,
const PRL UINT32 Size, const PRL UINT8 PTR V) ;

// Sets the encryption key. The key size must be equal to or
// larger than the one specified in the ICryptInfo structure.
PRL RESULT (PRL CALL *SetKey) (struct PrlCrypt* self, const PRL UINT8 PTR Key);

// Sets the initial initialization vector. The vector size must be

// equal to or larger than the one specified in the ICryptInfo structure as the
block size.

PRL RESULT (PRL CALL *SetInitIV) (struct PrlCrypt* self, const PRL UINT8 PTR V)

// Obtains a reference to the ICryptInfo structure containing the plug-in
information.
PRL RESULT (PRL CALL *GetInfo) (struct PrlCrypt* self, ICryptInfoPtr Info);

} PRL_STRUCT(PrlCrypt);
Exported functions

PriInitPlugin is a function that is called on plug-in loading and should contain the code to do some
global plug-in initialization. This function is optional.

PRL RESULT PRL CALL PrlInitPlugin ()

PriFiniPlugin is a function that is called on plug-in unloading and should contain the clean-up
code. This function is optional.

123

Parallels C API by Example

PRL RESULT PRL CALL PrlFiniPlugin ()

PriGetObjectinfo is a function that is called after plug-in initialization in order to enumerate the
plug-in interfaces. The InterfacesList parameter is used as output and should contain the list
of GUIDs of public interfaces provided by the plug-in.

PRL RESULT PRL CALL PrlGetObjectInfo (PRL UINT32 Number, PRL GUID* Uid, PRL GUID**
InterfacesList)

PriCreateObject is a function that is called in order to instantiate the corresponding plug-in object.
The function should contain a code that will properly initialize and populate the Pr1Plugin
structure a reference to which is passed back using the out parameter. The Parallels Service will
then use the returned reference to request the necessary interfaces (e.g. Pr1Crypt) using the
PrlPlugin: :QueryInterface () call

PRL RESULT PRL CALL PrlCreateObject (PRL GUID* Uid, PrlPlugin** Out)

The following subsection provides a sample plug-in implementation.

Implementing a Plug-in

This section goes step by step through a sample plug-in implementation and describes each step
in detail. This should give you an understanding of how to implement the plug-in and its interfaces.
An encryption engine used in this example is a simple XOR cipher. This is a simple algorithm that
can be easily broken, so we use it as a demonstration only. When developing your own plug-in, you
should use a stronger encryption algorithm according to your needs.

Include directives

A plug-in program must have the following include directives:

#include "PrlTypes.h"
#include "PrlErrors.h"
#include "PrlPluginClasses.h"

All of the above header files are provided in the Parallels Virtualization SDK. You have to make sure
that your compiler can find them on your computer. See the Installation chapter for the default
SDK installation location.

This sample program also uses the following standard includes:

finclude <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <new>

Plug-in GUID

A plug-in must have its own unique ID (GUID) in order to be properly identified on the Parallels
Service side. The following is an example of GUID declaration and initialization. You will have to
generate a GUID for your own plug-in.

static PRL GUID Obj = { 0x80lecba5, 0x90%a, 0x42fc, { 0x81, O0x62, Oxle, Ox7c, 0x51,
0x9%e, 0x84, 0Ox6e } };:

124

Parallels C API by Example

Components (classes) array

Declare and populate an array containing the list of GUIDs identifying the available interfaces. The
array is terminated with PRL_CLS_NULL, which is a NULL GUID.

static PRL GUID Classes[] = { PRL CLS BASE, PRL CLS ENCRYPTION, PRL CLS NULL };
Encryption block size

Define the encryption data block size for the XOR cipher.
#define BLOCK SIZE (16)

Define the encryption interface

PrlCrypt is the interface that contains pointers to the data encryption functions. We will
implement individual functions later in this example. Right now we will declare the component as a
member of a structure. We will also add two more members to the structure to hold the initialization
vector and the encryption key.

typedef struct IXorCrypt

{
PriCrypt I;

// Initialization vector

PRL_UINT8 m IV[BLOCK SIZE];

// Key

PRL UINT8 m Key[BLOCK SIZE];
} IXorCrypt;

Provide the plug-in description

Here we populate the plug-in information structure.

static const ICryptInfo PlugInfo =
{
{
(PRL_STR) "Sample",
(PRL _STR) " (c) Sample",
(PRL_STR) "XOR encryption engine",
(PRL_STR) "This engine utilizes the XOR cipher",
1, 0, O,
Obj
by
BLOCK SIZE, BLOCK SIZE
}i

Free the memory occupied by the base interface

Prl1Plugin is the base interface. It contains an important function that must be implemented. The
function frees the memory occupied by the Pr1Plugin structure. This has to be done because
the caller will have no knowledge of how this structure was allocated. We implement it as a
standalone function and will use a reference to it in the Pr1P1lugin structure declaration.

void PRL CALL Release (PrlPlugin* self)

125

Parallels C API by Example

free(self);

Initialize the encryption engine

In this step we implement a function that will initialize the encryption engine. The function prototype
is defined in the Pr1Crypt structure.

PRL RESULT PRL CALL Init (PrlCrypt* self)

{
IXorCrypt* I = (IXorCrypt*) self;

memset (I->m TV, 0, BLOCK SIZE);
memset (I->m Key, 0, BLOCK SIZE);
return PRL ERR SUCCESS;

}i

Main encryption engine

In this step we create a function that implements the actual encryption algorithm. The function
uses a simple XOR encryption where a bitwise XOR operator is applied to a block of data using the
specified key.

static void XorFunc (PRL UINT8 PTR a, PRL UINT8 PTR b)
{

PRL UINT64* pl = (PRL_UINT64*)a;

PRL, UINT64* p2 = (PRL _UINT64*)b;

pl[0] "= p2[0];
pl[1] *= p2[1];
}

This function encrypts the provided data block.

PRL RESULT PRL CALL Encrypt (PrliCrypt* _Self, PRL VOID PTR Data,
const PRL UINT32 Size, const PRL UINT8 PTR V)
{
if ((Size % BLOCK SIZE) ||
'Data)
return PRL_ERR INVALID ARG;

IXorCrypt* I = (IXorCrypt*) self;
PRL UINT32 Count = Size / BLOCK SIZE;
PRL UINT8 PTR Cur = (PRL UINT8 PTR)Data;

for (PRL_UINT32 i = 0; i < Count; i++, Cur += BLOCK SIZE)
{
XorFunc (Cur, I->m Key);
XorFunc (Cur, I->m IV);
if (v)
XorFunc (Cur, v);

}

return PRL ERR SUCCESS;
}

This function decrypts the provided data block.

PRL RESULT PRL CALL Decrypt (PrlCrypt* self, PRL VOID PTR Data,

126

Parallels C API by Example

const PRL UINT32 Size, const PRL UINT8 PTR V)

if ((size % BLOCK SIZE) ||
!'Data)
return PRL ERR INVALID ARG;

IXorCrypt* I = (IXorCrypt*) self;
PRL_UINT32 Count = Size / BLOCK SIZE;
PRL UINT8 PTR Cur = (PRL UINT8 PTR)Data;

for(PRLiUINT32 i = 0; 1 < Count; i++, Cur += BLOCKﬁSIZE)
{
if (v)
XorFunc (Cur, v);
XorFunc (Cur, I->m IV);
XorFunc (Cur, I->m Key);

}

return PRL ERR SUCCESS;
}

This function is used to set a key for the encryptor. The key size must be equal to or larger than the
one specified in the P1lugInfo structure (declared above).

PRL RESULT PRL CALL SetKey (PrlCrypt* self, const PRL UINT8 PTR Key)

{
IXorCrypt* I = (IXorCrypt*) self;

if (!Key)

{
memset (I->m Key, 0, BLOCK SIZE);
return PRL ERR SUCCESS;

}

memcpy (I->m Key, Key, BLOCK SIZE);

return PRL ERR SUCCESS;
}

This function sets the initial initialization vector. The vector size must be equal to the one specified
in the P1lugInfo structure as the block size.

PRL RESULT PRL CALL SetInitIV(PrlCrypt* self, const PRL UINT8 PTR V)
{
IXorCrypt* I = (IXorCrypt*) self;
if (!'v)
{
memset (I->m IV, 0, BLOCK SIZE);
return PRL ERR SUCCESS;
}

memcpy (I->m IV, v, BLOCK SIZE) ;

return PRL ERR SUCCESS;

Functions to obtain the plug-in information
The first function obtains a reference to the structure containing the plug-in description.

127

Parallels C API by Example

PRL RESULT PRL CALL GetBaseInfo (PrlPlugin* self, IPluginInfoPtr Info)

{
(void) self;

if (!'Info)
return PRL_ERR INVALID ARG;

*Info = PlugInfo.PluginInfo;

return PRL ERR SUCCESS;
}

The second function obtains a reference to the structure that contains the plug-in description
together with the data encryption key and block block sizes.

PRL RESULT PRL CALL GetInfo (PrlCrypt* self, ICryptInfoPtr Info)
{

(void) self;

if (!Info)
return PRL ERR INVALID ARG;

*Info = PlugInfo;

return PRL ERR SUCCESS;

The Querylinterface function

This function accepts the GUID of an interface and passes back a reference to the interface
instance.

PRL RESULT PRL_CALL QueryInterface (PrlPlugin* self, PRL GUID* Class, PRL VOID PTR PTR
_obj)
{
if (!_self || ! obj)
return PRL ERR INVALID ARG;

// Want to instantiate the base or encryption interface?
if (memcmp (Class, &Classes[0], sizeof (PRL GUID)) &&
memcmp (Class, &Classes[1l], sizeof (PRL _GUID)))

{
return PRL_ERR _OBJECT NOT FOUND;

}

// The interface pointer is the same for both objects
* obj = (PRL VOID PTR) self;

return PRL ERR SUCCESS;

Functions that must be exported

All exported functions must have C style declaration to properly resolve names at loading..

extern "C"

{

/*

* This function will be called immediately after the plug-in is loaded.
* You can put any code here that might be needed in your implementation.

128

Parallels C API by Example

* The function is optional.
*/
__attribute ((visibility("default"))) PRL RESULT PRL CALL PrlInitPlugin ()
{
return PRL ERR SUCCESS;
}
/*
* This function will be called immediately before the plug-in is unloaded.
* You can put any code here that might be needed in your implementation.
* The function is optional.
*/
__attribute ((visibility("default"))) PRL RESULT PRL CALL PrlFiniPlugin ()
{
return PRL ERR SUCCESS;
}

/*
* This function is used to obtain all available interfaces provided by the plug-in.
* The Number parameter is an interface number; the Uid and Classes parameters
* are object information that should be filled to caller.

=y
__attribute ((visibility("default"))) PRL RESULT PRL CALL PrlGetObjectInfo (PRL UINT32
Number,
PRL GUID* Uid, PRL GUID** InterfacesList)
{
if (Number != 0)
return PRL_ERR OBJECT NOT FOUND;
if (!'Uid || !'InterfaceslList)
return PRL ERR INVALID ARG;
*Uid = Obj;

*InterfacesList = Classes;

return PRL ERR SUCCESS;
}

/*
* This function is used to create a specified object and put a
* reference to it into the Out variable.

*/
__attribute ((visibility("default"))) PRL RESULT PRL CALL PrlCreateObject (PRL GUID*
Uid, PrlPlugin** Out)

{

if (!Uid || !Out)
return PRL_ERR INVALID ARG;

if (memcmp (Uid, &Obj, sizeof (PRL GUID)))
return PRL ERR OBJECT NOT FOUND;

IXorCrypt* I = (IXorCrypt*)malloc(sizeof (IXorCrypt)):

if (!1)
return PRL_ERR OUT OF MEMORY;

// Cleanup memory
memset (I, 0, sizeof (IXorCrypt)) :;

/*
* Fill functions table. If you skip something, you'll get
* SEGFAULT if there was no memset, or unpredictable errors

129

Parallels C API by Example

* if function address is equal to NULL.
*/
PrlPlugin* Base = (PrlPlugin*)I;
Base->Release = &Release;
Base->GetInfo = &GetBaselnfo;
Base->QuerylInterface = &QuerylInterface;

PrilCrypt* Crypt = (PrlCrypt*)I;
Crypt->Init = &Init;
Crypt->Encrypt = &Encrypt;
Crypt->Decrypt = &Decrypt;
Crypt->SetKey = &SetKey;
Crypt->SetInitIV = &SetInitIV;
Crypt->GetInfo = &GetInfo;

Out = (PrlPlugin)I;

return PRL ERR SUCCESS;

Building the Dynamic Library

The plug-in must be compiled as a dynamic library. You can use the following sample Makefile to
compile the sample program on Mac OS X.
FHEHFE R A AR E R AR AR R R R R R R R R R R R R R

Makefile for building: libsample plugin.dylib
S o

CC = g++
RM = rm —-f

CCFLAGS = -c -Wall -arch 1386 -arch x86 64 -02 -gdwarf-2 -fvisibility=hidden -02 -fPIC
-mmacosx-version-min=10.5

INCPATH = -I../Library/Frameworks/ParallelsVirtualizationSDK.framework/Headers
LDFLAGS = -arch x86 64 -mmacosx-version-min=10.5 -arch i386 -single module -dynamiclib
—compatibility version 1.0 -current version 1.0.0 -install name

libsample plugin.l.dylib

LIBRARY libsample plugin.dylib
SRCFILE = Plugin.cpp

OBJFILE = $(SRCFILE:.cCpp=.0)

.Cpp.o:
$(CC) $(CCFLAGS) $(INCPATH) $<

$ (LIBRARY) : $ (OBJFILE)
$(CC) $(LDFLAGS) $(OBJFILE) -o $@

all: $(LIBRARY)

clean:
$(RM) *.o *.dylib

130

Parallels C API by Example

Plug-in Installation and Usage

Plug-in installation directory and permissions

After building the plug-in:

1 copy the dynamic library to the /usr/1lib/parallels/extensions directory on your Mac.
The directory is created when you install Parallels Desktop.

2 Modify the plug-in file permissions. The owner of the file should be the root user. All users and
groups, including root, should have read-only access (-r-xr-xr-x) to the file. If anybody
has a write access, the plug-in will fail to load!

Enabling third-party plug-in support

Before you can use the plug-in, you have to turn on third-party plug-in support in Parallels Desktop
preferences. Select Preferences from the Parallels Desktop menu. On the Preferences window go
to Advanced and select the Allow third-party plug-ins option. When this option is selected,
Parallels Desktop will scan the plug-in directory and will load the new plug-in (if you have more than
one plug-in, it will load all of them).

Encrypting a virtual machine
To encrypt a virtual machine using the encryption plug-in, open the virtual machine configuration

and go to Options/Security. Press the Encryption Turn On... button. Select the encryption plug-in
in the Encryption Engine list. Choose and type a password and click OK.

131

CHAPTER 9

Parallels Python APl Concepts

Parallels Python APl is a wrapper of the C API described earlier in this guide. While it is based on
the same essential principles as the C API, there are some notable differences. They are
summarized below.

« Handles are not directly visible in the Python API. Instead, Python classes are used. You don't
obtain a handle in Python, you obtain an instance of a class.

« Instead of calling a C function passing a handle to it, you use a Python class and call a method
of that class.

- Memory management is automatic. This means that you don't have to free a handle (destroy an
object) when it is no longer needed.

« No callbacks! Callback functionality does not exist in the Parallels Python API. This means a few
things. First, it is impossible to receive asynchronous method results via callbacks, which
essentially means that these methods are not truly asynchronous in the Python API. Second,
you cannot receive system event notifications in Python. Finally, you cannot automatically
receive periodic performance reports (you can still obtain the reports via synchronous calls).

« Error handling is implemented using exceptions.

« Strings are handled as objects (not as char arrays compared to the C API), which makes it
much easier to work with strings as input and output parameters.

In This Chapter

Package and MOGUIESuuei e 132
IS SES .ttt 133
ClaSS MEBINOASeieeei it e e 133
) gl o =T T 110V 137

Package and Modules

The following table lists packages and modules comprising the Parallels Python API.

prlsdkapi This is the main package containing the majority of the
classes.

prlsdkapi.prlsdk This is an internal module. Do not use it in your
applications.

prlsdkapi.prlsdk.consts This module contains constants that are used throughout
the API. Most of the constants are combined into groups

Parallels Python API Concepts

which are used as pseudo enumerations. Constants that
belong to the same group have the same prefix in their
names. For example, constants with a PDE__ prefix identify
device types: PDE GENERIC DEVICE,

PDE_HARD DISK, a

PDE_GENERIC NETWORK ADAPTER, etC.

In this guide, and in the Parallels Python API Reference
guide, we identify individual groups of constants using
these prefixes. For example, we might say, "for the
complete list of device types, see the PDE_ xxx
constants".

prlsdkapi.prlsdk.errors This module contains error code constants. There's a very
large amount of error codes but the majority of them are
used internally. The error code constant are also grouped
using prefixes in their names.

The Parallels Python package is installed automatically during the Parallels Virtualization SDK
installation and is placed into the default directory for Python site-packages.

Classes

Compared to the Parallels C API, a Python class is an equivalent of a C handle. In most cases, an
instance of a class must be obtained using a method of another class. Instances of particular
classes are obtained in a certain order. A typical program must first obtain an instance of the
prlsdkapi.Server class identifying the Parallels Service. If the intention is to work with a virtual
machine, an instance of the prlsdkapi . Vm class identifying the virtual machine must then be
obtained using the corresponding methods of the prlsdkapi.Server class.To view or modify
the virtual machine configuration setting, an instance of the prlsdkapi.VmConfig class must be
obtained using a method of the pr1sdkapi . Vm class, and so forth. The examples in this guide
provide information on how to obtain the most important and commonly used objects (server,
virtual machine, devices, etc.). In general, an instance of a class is obtained using a method of a
class to which the first class logically belongs. For example, a virtual machine belongs to a server,
so the Server class must be used to obtain the virtual machine object. A virtual device belongs to a
virtual machine, so the virtual machine object must be used to obtain a device object, and so on. In
some cases an object must be created manually, but these cases are rare. The most notable one is
the prlsdkapi.Server class, which is created using the server = prlsdkapi.Server ()
statement in the very beginning of a typical program.

Class Methods

There are two basic types of method invocations in the Parallels Python API: synchronous and
asynchronous. A synchronous method completes executing before returning to the caller. An
asynchronous method starts a job in the background and returns to the caller immediately without
waiting for the operation to finish. The following subsections describe both method types in detail.

133

Parallels Python API Concepts

Synchronous Methods

A typical synchronous method returns the result directly to the caller as soon as it completes
executing. In the following example the vm _config.get name method obtains the name of a
virtual machine and returns it to the caller:

vm name = vm config.get name ()

Synchronous methods in the Parallels Python API are usually used to extract data from local
objects that were populated earlier in the program. The data can be extracted as objects or native
Python data types. Examples include obtaining virtual machine properties, such as name and OS
version, virtual hard disk type and size, network interface emulation type or MAC address, etc. In
contrast, objects that are populated with the data from the Parallels Service side are obtained using
asynchronous methods, which are described in the following section.

Synchronous methods throw the prlsdkapi.Prl1SDKError exception. For more information on
exceptions, see the Error Handling section (p. 137).

Asynchronous Methods

All asynchronous methods in the Parallels Python API return an instance of the pr1sdkapi . Job
class. A Job object is a reference to the background job that the asynchronous method has
started. A job is executed in the background and may take some time to finish. In other languages,
asynchronous jobs are usually handled using callbacks (event handlers). Unfortunately, callbacks
are not available in the Parallels Python API. You have two ways of handling asynchronous jobs in
your application. The first one consists of implementing a loop and checking the status of the
asynchronous job in every iteration. The second approach involves the main thread suspending
itself until the job is finished (essentially emulating a synchronous operation). The following
describes each approach in detail.

Checking the job status

The prlsdkapi.Job class provides the get status method that allows to determine whether
the job is finished or not. The method returns one of the following constants:

prlsdkapi.prlsdk.consts.PJS RUNNING -- indicates that the job is still running.
prlsdkapi.prlsdk.consts.PJS FINISHED -- indicates that the job is finished.

prlsdkapi.prlsdk.consts.PJS UNKNOWN -- the job status cannot be determined for
unknown reason.

By evaluating the code returned by the prlsdkapi.Job.get status method, you can
determine whether you can process the results of the job or still have to wait for the job to finish.
The following code sample illustrates this approach.

Start the virtual machine.

134

Parallels Python API Concepts

Jjob = vm.start ()

Loop until the job is finished.
while True:
status = job.get status/()
if job.get status() == prlsdkapi.prlsdk.consts.PJS FINISHED:
break

The scope of the loop in the example above doesn't have to be local of course. You can check the
job status in the main program loop (if you have one) or in any other loop, which can be a part of
your application design. You can have as many jobs running at the same time as you like and you
can check the status of each one of them in the order of your choice.

Suspending the main thread

The prlsdkapi.Job class provides the wait method that can be used to suspend the execution
of the main thread until the job is finished. The method can be invoked as soon as the Job object is
returned by the original asynchronous method or at any time later. The following code snippet
illustrates how it is accomplished.

Start the virtual machine. This is an asynchronous call.
job = vm.start ()

Suspend the main thread and wait for the job to complete.
result = job.wait ()

The job is now finished and our program continues...
vm_config = vm.get config()
print vm config.get name() + " was started."

You can also execute both the original asynchronous method and the Job . wait method on the
same line without obtaining a reference to the Job object, as shown in the following example.
Please note that if you do that, you will not be able to use any of the other methods of the Job
class that can be useful in certain situations. The reason is, this type of method invocation returns
the prlsdkapi.Result object containing the results of the operation, not the Job object (the
Result class is described in the Obtaining the job result subsection below). It it still a perfectly
valid usage that simplifies the program and reduces the number of lines in it.

Start a virtual machine, wait for the job to complete.
vm.start () .wait ()

Obtaining the job results

135

Parallels Python API Concepts

Asynchronous methods that are used to perform actions of some sort (e.g. start or stop a virtual
machine) don't usually return any data to the caller. Other asynchronous methods are used to
obtain data from the Parallels Service side. The data is usually returned as an object or a list of
objects. A good example would be a pr1sdkapi . Vm object (virtual machine), a list of which is
returned by the prlsdkapi.Server.get vm list asynchronous method. The data is not
returned to the caller directly. It is contained in the prl1sdkapi.Result object, which must be
obtained from the Job object using the Job.get result method. The prlsdkapi.Result
class is a container that can contain one or more objects or strings depending on the operation that
populated it. To determine the number of objects that it contains, the

Result.get params_count method must be used. To obtain an individual object, use the
get param by index method passing anindex as a parameter (from O to count - 1).When an
asynchronous operation returns a single object, the get param method can be used. Strings are
obtained in the similar manner using the corresponding methods of the Result class
(get_param by index as string, get param as_ string).

The following code snippet shows how to execute an asynchronous operation and then obtain the
data from the Job object. In this example, we are obtaining the list of virtual machines registered
with the Parallels Service.

Obtain the virtual machine list.

get_vm list is an asynchronous method that returns

a prlsdkapi.Result object containing the list of virtual machines.

job = server.get vm list()

Job.wait ()

result = job.get result ()

Iterate through the Result object parameters.
Each parameter is an instance of the prlsdkapi.Vm class.
for i in range(result.get params count()) :

vm = result.get param by index (i)

Obtain the prlsdkapi.VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

Get the name of the virtual machine.
vm_name = vm config.get name ()

Other useful Job methods
The Job class provides other useful methods:

get ret code -- obtains the asynchronous operation return code. On asynchronous operation
completion, the job object will contain a return code indicating whether the operation succeeded or
failed. Different jobs may return different error codes. The most common codes are
prlsdkapi.prlsdk.consts.PRL ERR _INVALID ARG (invalid input parameters were
specified during the asynchronous method invocation) and

prlsdkapi.prlsdk.consts.PRL ERR SUCCESS (method successfully completed).

cancel -- attempts to cancel a job that is still in progress. Please note that not all jobs can be
canceled.

136

Parallels Python API Concepts

Asynchronous methods throw the prlsdkapi.Prl1SDKError exception. For more information
on exceptions, see the Error Handling section (p. 137).

Error Handling

Error handling in the Parallels Python APl is done through the use of exceptions that are caught in
try blocks and handled in except blocks. All methods in the API throw the
prlsdkapi.PrlSDKError exception. The Pr1SDKError object itself contains the error
message. To obtain the error code, examine the prlsdkapi.Prl1SDKError.error code
argument. The error code can be evaluated against standard Parallels API errors, which can be
found in the prlsdkapi.prlsdk.errors module. The most common error codes are

PRL ERR SUCCESS, PRL ERR INVALID ARG, PRL ERR OUT OF MEMORY. Forthe complete
list of errors, see the prlsdkapi.prlsdk.errors module documentation or the Parallels
Python API Reference guide.

The following code sample illustrates the exception handling:

try:
The call returns a prlsdkapi.Result object on success.
result = server.login (host, user, password, '', 0, 0, security level) .wait ()
except prlsdkapi.PrlSDKError, e:

print "Login error: %s" % e

print "Error code: " + str(e.error code)

raise Halt

137

CHAPTER 10

Parallels Python API by Example

This chapter provides code samples and descriptions of how to perform the most common tasks
using the Parallels Python API. Each sample is provided as a complete function that can be used in
your own program. Each sample function accepts a parameter -- usually an instance of the
prlsdkaspi.Server class identifying the Parallels Service or an instance of the prlsdkapi.vm
class identifying a virtual machine. The Creating a Basic Application section (p. 138) shows how
to create and initialize the prlsdkapi . Server object and contains a skeleton program that can
be used to run individual examples provided later in this chapter. To run the examples, simply paste
a sample function into the program and then call it from main () passing the correct object and/or
other required values.

In This Chapter

Creating a Basic APPIICATIONuuuiiiiiiiiiiiiiiiiiiiiiiiei e 138
Connecting to Parallels Service and LOGGINGg IN ..vvvvvvviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiineinnnns 140
HOSE OPErationScooiiiiiii 142
Virtual Machine OperationS...........ccuviiiii 145
Remote DESKIOD ACCESS ...covviiiiiiiiiiieeee e 163

Creating a Basic Application

The following steps are required in any programs using the Parallels Python API:

1 Import the prlsdkapi package. This is the main Parallels Python APl package containing the
majority of the classes and additional modules.

2 Initialize the APl using the prlsdkapi.init desktop sdk () function. To verify that the
APl was initialized successfully, use the prlsdkapi.is sdk _initialized() function.

3 Create an instance of the prlsdkapi.Server class. The Server class provides methods for
logging in and for obtaining other object references (a virtual_machine object in particular).

4 Perform the login operation using the Server.login local () method.
To exit gracefully, the program should perform the following steps:

1 Log off using the Server.logoff () method. The method does not accept any parameters
and simply ends the client session.

2 Deinitialize the APl using the prlsdkapi.deinit sdk () function.

Parallels Python API by Example

Example

#!/usr/bin/env python

—-*— coding: utf-8 -*-

#

(c) Parallels Software International, Inc. 2005-2015
#

#

Example of prlsdkapi usage.

#

Import the main Parallels Python API package.
import prlsdkapi

Import some of the standard Python modules.

We will not use all of them in this sample, but
we will use them in other samples later.

import sys, time, getopt, operator, re, random

Define constants for easy referencing of the Parallels Python API modules.
consts = prlsdkapi.prlsdk.consts

An exception class to use to terminate the program.
class Halt (Exception) :
pass

Parallels Service login.

@param server: A new instance of the prlsdkapi.Server class.

@param user: User name (must be a valid host OS user).

@param password: User password.

@param security level: Connection secuirty level. Must be one of the
prlsdk.consts.PSL xxx constants.

wnon

def login server (server, user, password, security level):

try:
The call returns a prlsdkapi.Result object on success.
result = server.login local('', 0, security level) .wait ()
except prlsdkapi.PrlSDKError, e:
print "Login error: %s" % e
raise Halt

Obtain a LoginResponse object contained in the Result object.
LoginResponse contains the results of the login operation.
login response = result.get param/()

Get the Parallels Desktop version number.
product version = login response.get product version ()

Get the host operating system version.
host os version = login response.get host os version ()

Get the host UUID.
host uuid = login response.get server uuid()

print""

print "Login successful"

print""

print "Parallels Desktop version: " + product version

139

Parallels Python API by Example

print "Host OS verions: " + host os version
print "Host UUID: " + host_uuid
print ""

FhAFH AR A A A
def main () :

Initialize the library for Parallels Desktop.
prlsdkapi.init desktop sdk ()

Create a Server object and log in to Parallels Desktop.
server = prlsdkapi.Server ()
login server (server, "root", "secret", consts.PSL NORMAL SECURITY) ;

Log off and deinitialize the library.
server.logoff ()
prlsdkapi.deinit sdk()

if name == " main ":
try:
sys.exit (main())
except Halt:
pass

Connecting to Parallels Service and Logging In

The sample program in the previous section provided basic instructions on how to connect and log
in to a local or a remote host. In this section, we will discuss these operations in greater detail.

Parallels Server accepts both local and remote connections. This means that your program can run
anywhere on the network and connect to the Parallels Server remotely. Parallels Server allows
multiple connections. If running a program locally, you have an option to login as the current user or
as a specific user. If a program is running on a remote machine, you always have to specify the
user information.

All other Parallels virtualization products accept local connections only. This means that you can
only run your program on the same computer that hosts the Parallels Virtualization Service. Multiple
connections are not allowed, so the only option available is to connect as the current user.

The prlsdkapi.Server class provides two login methods: 1login local and login.

The login local method is used to establish alocal connection as a current user. It can be
used with Parallels Server and other Parallels products.

The 1ogin () method is used to establish a local or a remote connection as a specified user. It
can be used with Parallels Server only.

The following tables describe the parameters of the two login methods.

prisdkapi.Server.login_local
140

Parallels Python API by Example

Parameter

Type

Description

sPrevSessionUuid

string

[optional] Previous session ID. This parameter
can be used in recovering from a lost connection.
The ID will be used to restore references to the
asynchronous jobs that were started in the
previous session and are still running on the
server. If you are not restoring a connection, omit
this parameter or pass an empty string.

The default value is empty string.

port

integer

[optional] Port number at which Parallels Service
is listening for incoming requests. To use the
default port number, pass 0. If the default port
number was changed by the administrator of
your system, specify the correct value.

The default value is 0.

security level

integer

[optional] Communication security level to use for
the session. The value must be specified using
one of the constants with the PSL_ prefix. The
following options are currently available (for
possible changes, consult the Parallels Python
API Reference guide):

PSL HIGH SECURITY - using SSL.
PSL_LOW_SECURITY - no encryption.
PSL NORMAL SECURITY - mixed.

Parallels Service configuration have a setting
specifying the minimum security level (the setting
can be modified). You must specify here an equal
or a higher level to establish a connection. To find
out the minimum level, use the

get min security level method of the
prlsdkapi.DispConfig class.

The default value is PSL._HIGH SECURITY.

prisdkapi.Server.login

Parameter Type Description

host string The IP address or name of the host.

user string User name.

passwd string User password.

sPrevSessionUuid |string [optional] Previous session ID. This parameter
can be used in recovering from a lost connection.
The ID will be used to restore references to
asynchronous jobs that were started in the
previous session and are still running on the
server. If you are not restoring a connection, omit
this parameter or pass an empty string value.
The default value is empty string.

port cmd integer [optional] Port number on which Parallels Service

141

Parallels Python API by Example

is listening for incoming requests. To use the
default port number, pass 0. If the default port
number was changed by the administrator,
specify the correct value.

The default value is 0.

timeout integer [optional] Timeout value in milliseconds. The
operation will be automatically interrupted if a
connection is not established within this
timeframe. Specify O (zero) for infinite timeout.

The default value is 0.

security level integer [optional] Communication security level to use for
the session. The value must be specified using
one of the constants with the PSL_ prefix. The
following options are currently available (for
possible changes, consult the Parallels Python
API Reference guide):

PSL HIGH SECURITY - using SSL.
PSL_LOW_SECURITY - no encryption.
PSL NORMAL SECURITY - mixed.

Parallels Service configuration have a setting
specifying the minimum security level (the setting
can be modified). You must specify here an equal
or a higher level to establish a connection. To find
out the minimum level, use the

get min security level method of the
prlsdkapi.DispConfig class.

The default value is PSL_HIGH SECURITY.

Both methods return an instance of the pr1sdkapi . LoginResponse class containing some
basic information about the host, the new session ID, and the information about the previous
session (if applicable).

Host Operations

Retrieving Host Configuration Info

The Parallels Python API provides a set of methods to retrieve detailed information about a host
machine. This includes:

« CPU(s) -- number of, mode, model, speed.
« Memory (RAM) size.
« QOperating system -- type, version, etc.

« Devices -- disk drives, network interfaces, ports, sound.

142

Parallels Python API by Example

This information can be used when modifying Parallels Service preferences, setting up devices
inside virtual machines, or whenever you need to know what resources are available on the physical
host.

The information is obtained using the get srv_config method of the prlsdkapi.Server
class. This is an asynchronous method, so the information is returned via the Job and Result
objects (see the Asynchronous Methods section (p. 134) for more information). The name of the
class containing the host configuration information is prlsdkapi.ServerConfig.

Example

wnon

def

This function demonstrates how to obtain the

host computer configuration information.

@param server: An instance of prlsdkapi.Server identifying the
Parallels Service.

get host configuration info (server):
print mn

print "Host Configuration Information"
print " "

Obtain an instance of prlsdkapi.ServerConfig containing the
host configuration information.
try:
result = server.get srv config() .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e
srv_config = result.get param()

Get CPU count and model.

print "CPU count: " + str(srv _config.get cpu count())
print "CPU model: " + srv_config.get cpu model ()
print "VT-d support: " + str(int(srv _config.is vtd supported()))

Get RAM size.
print "RAM size: " + str(srv_config.get host ram size())

Get the network adapter info.
The type of the netd object is prlsdkapi.SrvCfgNet.

print ""

print "Network adapters"

print ""

print "No. Type Status System Index"
print "-----------—— "

for i in range(srv_config.get net adapters count()):
hw net adapter = srv _config.get net adapter (i)
adapter type = hw net adapter.get net adapter type ()

if adapter type == consts.PHI REAL NET ADAPTER:
adapter type = "Physical adapter"

elif adapter type == consts.PHI VIRTUAL NET ADAPTER:
adapter type = "Virtual adapter"

elif adapter type == consts.PHY WIFI REAL NET ADAPTER:
adapter type = "Wi-Fi adapter"

143

Parallels Python API by Example

if hw net adapter.is_ enabled() :

status = "enabled"
elisel:
status = "disabled"
print " " + str(i+l) + ". " + adapter type + " " + \
status + " " + str(hw net adapter.get sys index())

Managing Parallels Service Preferences

Parallels Service preferences is a set of configuration parameters that control its behavior. The most
important parameters are:

» Parallels Service memory limits.
« Virtual machine memory limits and recommended values.
« Virtual network adapter information.

« Default virtual machine directory (the directory where all new virtual machines are created by
default).

¢ Minimum allowed communication security level.

To obtain the preferences information use the prlsdkapi.Server.get common prefs
method. This is an asynchronous method. The preferences information is obtained from the
Result object and is returned as an instance of the prlsdkapi.DispConfig class. Once you
obtain the instance, you can use its methods to view and modify individual settings. Parallels
Service preferences modifications are performed in a transactional manner. First you have to invoke
the Server.common prefs begin edit method to mark the beginning of the modification
operation (i.e "begin a transaction"). This will timestamp the operation to prevent a conflict with
other programs trying to make modifications to the same data at the same time. When you are
done making the changes, invoke the Server.common prefs commit method to commit the
changes to the Parallels Service. If there's a conflict, the method will throw an exception and your
commit will be aborted. In such a case, you will have to re-evaluate the data and repeat the steps
from the beginning. On success, the changes will be saved on the Parallels Service side.

Example

This function shows how to view and modify Parallels Service preferences.
@param server: An instance of prlsdkapi.Server identifying the
Parallels Service.

def srv preferences management (server) :

print m
print "Parallels Service Preferences Management"
PELRE Yososoomoooooosoooosososoososoooososoosases "

The preferences info is obtained as a prlsdkapi.DispConfig object.
try:

result = server.get_common_prefs().wait()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" $ e

144

Parallels Python API by Example

return
disp config = result.get param()

Obtain the default virtual machine directory.
print "Default virtual machine directory: " + \
disp config.get default vm dir()

The minimum allowed security level.
This setting ensures that the communication security level
specified at login satisfies the necessary requirements.

security level = disp config.get min security level ()
if security level == consts.PSL LOW SECURITY:
security level = "Low"
elif security level == consts.PSL NORMAL SECURITY:
security level = "Normal"
elif security level == consts.PSL HIGH SECURITY:
security level = "High"
print "Currently set minimum security level: " + security level

Modify the minimum security level.
First, mark the beginning of the editing operation (required step).
try:
server.common prefs begin edit () .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e
return

Set the new security level value.
new level = consts.PSL HIGH SECURITY
disp config.set min security level (new_level)

Commit the changes.

try:
server.common prefs commit (disp config) .wait ()

except prlsdkapi.PrlSDKError, e:

o)

i - %
rint "Error: %s" e
return

print "Minimum security was set to High."

Virtual Machine Operations

This section and its subsections describe the most common tasks that can be performed on virtual
machines using the Parallels Python API.

In order to perform operations on a virtual machine, an instance of the pr1sdkapi . Vm class
identifying the virtual machine must be obtained. Once you have the instance, you can use its
methods to perform some of the virtual machine management operations (start, stop, pause,
create snapshot, clone, and many others) and to obtain other objects that allow to perform
additional virtual machine management functions, such as modifying the virtual machine
configuration. This section begins with a demonstration of how to obtain the virtual machine list
from the Parallels Service (including obtaining a vm object identifying an individual machine) and
then describes how to perform various virtual machine management tasks.

145

Parallels Python API by Example

Obtaining the Virtual Machine List

Before a virtual machine can be powered on, it must be registered with the Parallels Service. All
new virtual machines created with Parallels management tools are registered by default. Some
virtual machines can exist on the host without being registered. This can happen if the virtual
machine files were copied from another location or computer or if the virtual machine was
intentionally removed from the Parallels Service registry. The list of the machines that are registered
with Parallels Service can be retrieved using the get _vm_ 1ist method of the
prlsdkapi.Server class. The method obtains a prlsdkapi.Result object containing a list
of prlsdkapi . Vm objects, each of which can be used to obtain a complete information about an
individual virtual machine. Once we obtain the Result object, we will have to extract individual vm
objects from it using Result.get params_count and Result.get param methods. The first
method returns the vm object count. The second method returns a vm object specified by its index
inside the container.

The following example shows how obtain the virtual machine list. The sample functions accepts a
prldsdkapi.Server object. Before passing it to the function, the object must be properly
created, the API library must be initialized, and a connection with the Parallels Service must be
established. Please see the Creating a Basic Application section (p. 138) for more information
and code samples.

Example

Obtain a list of the existing virtual machines and print it
on the screen.
@param server: An instance of prlsdkapi.Server

identifying the Parallels Service.

def get vm list (server):

Obtain the virtual machine list.

get vm list is an asynchronous method that returns

a prlsdkapi.Result object containing the list of virtual machines.
job = server.get vm list()

result = job.wait ()

print "Virtual Machine" + " " + "State"

Iterate through the Result object parameters.
Each parameter is an instance of the prlsdkapi.Vm class.
for i in range (result.get params count()) :

vm = result.get param by index (i)

Obtain the prlsdkapi.VmConfig object containing
the virtual machine

configuration information.

vm _config = vm.get config()

Get the name of the virtual machine.
vm_name = vm_config.get name ()

Obtain the VmInfo object containing the
146

Parallels Python API by Example

virtual machine state info.
The object is obtained from the Result object returned by
the vm.get state() method.
try:
state result = vm.get state().wait()
except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

Now obtain the VmInfo object.
vm_info = state result.get param()

Get the virtual machine state code.
state code = vm info.get state()
state desc = "unknown status"

Translate the state code into a readable description.
For the complete list of states, see the
VMS xxx constants in the Python API Reference guide.

if state code == consts.VMS RUNNING:
state desc = "running"

elif state code == consts.VMS STOPPED:
state desc = "stopped"

elif state code == consts.VMS PAUSED:
state desc = "paused"

elif state code == consts.VMS SUSPENDED:
state desc = "suspended"

Print the virtual machine name and status on the screen.
vm_name = vm name + " "
print vm name[:25] + "\t" + state desc

PElRE Yoooooooooooeoeeos oo o CEE O O C O EOEOSOCC "

Searching for a Virtual Machine

The example provided in this section does not really show anything new but it can be useful when
testing the sample code provided in later sections. The sample function below accepts a virtual
machine name as a parameter (the name can be partial) and searches for it in the virtual machine
list retrieved from the host. If it finds it, it returns the pr1sdkapi . Vm object identifying the virtual
machine to the caller. The function uses the same approach that was used in the Obtaining the
Virtual Machine List section (p. 146). It obtains the list of virtual machine from the Parallels Service,
then iterates through it comparing a virtual machine name to the specified hame.

Example

Obtain a Vm object for the virtual machine specified by its name.

@param vm to find: Name of the virtual machine to find.

Can be a partial name (starts with the specified string).
def search vm(server, vm to find):

try:
result = server.get vm list () .wait()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e
return

for i in range(result.get params count()):

147

Parallels Python API by Example

vm = result.get param by index (i)

vm_name = vm.get name ()

if vm name.startswith(vm to find):
return vm

print 'Virtual machine "' + vm to find + '" not found.'

The following code demonstrates how the function can be called from the main () function.

Search for a virtual machine specified by name.

search name = "Windows"
print mwn
print "Searching for '" + search name + "%'"

vm = search vm(server, search name)

if isinstance(vm, prlsdkapi.Vm):
print "Found virtual machine " + vm.get name ()

Performing Power Operations

To start, stop, pause, reset, suspend, or resume a virtual machine, a prlsdkaspi . Vm object
must first be obtained. The prlsdkapi . Vvm class provides individual methods for each of the
power operations.

Please note that powering off a virtual machine is not the same as performing an operating system
shutdown. When a virtual machine is stopped, it is a cold stop (i.e. it is the same as turning off the
power to a computer). Any unsaved data will be lost. However, if the OS in the virtual machine
supports ACPI (Advanced Configuration and Power Interface) then it can be used to shut down the
virtual machine properly. ACPI is currently supported only with "stop" and "pause" operations.
Corresponding methods have an additional parameter that can be used to instruct them to use
ACPI.

The following code snippets demonstrate how to perform each of the power operations.

Examples

Stop the virtual machine.
The boolean parameter (True) specifies to use ACPI.
try:
vm.stop (True) .wait ()
except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e

Start the virtual machine.
try:

vm.start () .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e

Pause the virtual machine.
The boolean parameter specifies to use ACPI.
try:
vm.pause (True) .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" $ e

148

Parallels Python API by Example

Resume the virtual machine.
try:

vm.resume () .wait ()

except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e

Restart the virtual machine.
try:

vm.restart () .wait ()

except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e

Reset the virtual machine. This operation is an equivalent of

Stop and Start performed in succession.

The stop operation will NOT use ACPI, so the entire reset

operation will resemble the "Reset" button pressed on a physical box.
try:

vm.reset () .wait ()

except prlsdkapi.PrlSDKError, e:

<)

print "Error: %s" $ e

Creating a New Virtual Machine

The first step in creating a new virtual machine is to create a blank virtual machine and register it
with the Parallels Service. A blank virtual machine is an equivalent of a hardware box with no
operating system installed on the hard drive. Once a blank virtual machine is created and
registered, it can be powered on and an operating system can be installed on it.

In this section, we will discuss how to create a typical virtual machine for a particular OS type using
a sample configuration. By using this approach, you can easily create a virtual machine without
knowing all of the little details about configuring a virtual machine for a particular operating system

type.

The steps involved in creating a typical virtual machine are:

1

Obtain a prlsdkapi.SrvConfig object containing the host machine configuration
information. This information is needed to configure the new virtual machine, so it will run
properly on the given host.

Obtain a new prlsdkapi . Vvm object that will identify the new virtual machine. This must be
performed using the prlsdkapi.Server.create vm method.

Obtain an instance of the prlsdkapi.VmConfig object that will contain the new virtual
machine configuration information. This step must be performed using the
prlsdkapi.Vm.get config method.

Set the default configuration based on the version of the OS that you will later install in the
machine. This step is performed using the

prlsdkapi.VvmConfig.set default config () method. You supply the version of the
target OS and the method will generate the appropriate configuration parameters automatically.
The OS version is specified using predefined constants that have the PVS_GUEST VER_ prefix
in their names.

149

Parallels Python API by Example

Choose a name for the virtual machine and set it using the vmConfing.set name method.

Modify the default configuration parameters if needed. For example, you may want to modify
the hard disk image type and size, the amount of memory available to the machine, and the
networking options. When modifying a device, an object identifying it must first be obtained and
then its methods and properties can be used to make the modifications. The code sample
provided in this section shows how to modify some of the default configuration values.

7 Create and register the new machine using the vm. reg () method. This step will create the
necessary virtual machine files on the host and register the machine with Parallels Service. The
virtual machine directory will have the same name as the name you've chosen for your virtual
machine and will be created in the default location for this Parallels Service. You may specify a
different virtual machine directory name and path if you wish.

Sample

Create a new virtual machine.
def create vm(server):

Obtain the prlsdkapi.ServerConfig object.
The object contains the host machine configuration
information.
try:
result = server.get srv config() .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e
srv_config = result.get param()

Obtain a new prlsdkapi.Vm object.
vm = server.create vm()

Obtain a prlsdkapi.VmConfig object.

The new virtual machine configuration will be performed
using this object. At this time the object will be empty.
vm_config = vm.get config()

Use the default configuration.
Parameters of the set default config method:
param 1: The host machine configuration object.
param 2: Target OS type and version.
param 3: Specifies to create the virtual machine devices using
default values (the settings can be modified
later if needed).
vm_config.set default config(srv_config, \
consts.PVS GUEST VER WIN XP, True)

Set the virtual machine name and description.
vm_config.set name ("My New XP machine")
vm_config.set description("Parallels Python API sample")

Modify the default RAM size and HDD size.

These two steps are optional. If you omit them, the

default values will be used.

vm config.set ram size (256)

Set HDD size to 10 gig.

The get device method obtains a prlsdkapi.VmHardDisk object.

150

Parallels Python API by Example

The index 0 is used because the default configuration has a
single hard disk.

dev_hdd = vm.get hard disk(0)

dev_hdd.set disk size (10000)

Register the virtual machine with the Parallels Service.
The first parameter specifies to create the machine in the
default directory on the host computer.
The second parameter specifies that non-interactive mode
should be used.
print "Creating a virtual machine..."
try:
vmm.reg ("", True).wait ()

except prlsdkapi.PrlSDKError, e:

[

print "Error: %s" % e
return

print "Virtual machine was created successfully."

Obtaining Virtual Machine Configuration Data

The virtual machine configuration information includes the machine name, guest operating system
type and version, RAM size, disk drive and network adapter information, and other settings. To
obtain this information, a prlsdkapi.VmConfig object must be obtained from the
prlsdkapi.Vm object (the object that identifies the virtual machine). The object methods can then
be used to extract the data. The examples in this section show how to obtain the most commonly
used configuration data. We will talk about modifying configuration parameters in the Modifying
Virtual Machine Configuration section (p. 154).

All sample functions below accept a single parameter -- an instance of prl1sdkapi.Vm class. To
obtain the object, you can use the helper function search vm () that we've created in the
Searching for a Virtual Machine section (p. 147).

Obtaining the RAM size

def get vm ram size(vm) :

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

Get the virtual machine RAM size.
ram size = vm config.get ram size ()
print "RAM size: " + str(ram size)

Obtaining the OS type and version
def get vm os info (vm) :
print mmn

Virtual machine name.
print "Virtual machine name: " + vm.get name ()

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

151

Parallels Python API by Example

Obtain the guest OS type and version.

0S types are defined as PVS GUEST TYPE xxX constants.

For the complete list, see the documentation for

the prlsdkapi.prlsdk.consts module or

the Parallels Python API Reference guide.

os _type = vm config.get os type()

if os_type == consts.PVS GUEST TYPE WINDOWS:
osType = "Windows"

elif os type == consts.PVS GUEST TYPE LINUX:
osType = "Linux"

elses

osType = "Other type (" + str(os type) + ")"

4o o o e

OS versions are defined as PVS GUEST VER xxx constants.
os version = vm config.get os version ()

if os version == consts.PVS GUEST VER WIN XP:
osVersion = "XP"
elif os version == consts.PVS GUEST VER WIN 2003:
osVersion = "2003"
elif os version == consts.PVS GUEST VER LIN FEDORA 5:
osVersion = "Fedora 5"
else:
osVersion = "Other version (" + str(os version) + ")"
print "Guest 0S: " + osType + " " + osVersionRAM size

Obtaining optical disk drive information

def get optical drive info (vm) :

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

print ""
print "Optical Drives:"

Iterate through the existing optical drive devices.
count = vm config.get optical disks count ()
for i in range (count) :

print mm

print "Drive " + str(i)

Obtain an instance of VmDevice containing the optical drive info.
device = vm config.get optical disk (i)

Get the device emulation type.

In case of optical disks, this value specifies whether the virtual device
is using a real disk drive or an image file.

emulated type = device.get emulated type ()

if emulated type == consts.PDT USE REAL DEVICE:

print "Uses physical device"
elif emulated type == consts.PDT USE IMAGE FILE:

print "Uses image file " + '"' + device.get image path() + '"'
@lses

print "Unknown emulation type"

if device.is enabled() :
print "Enabled"

1562

Parallels Python API by Example

else:
print "Disabled"

if device.is connected() :
print "Connected"
else:
print "Disconnected"

Obtaining hard disk information

def get hdd info (vm) :

Obtain the VmConfig object containing the virtual machine
configuration information.

vm_config = vm.get config()
print mm

print "Virtual Hard Disks:"
PELRE Yosoooooooosoooososs "

count = vm config.get hard disks count ()
for i in range (count) :

print ""

print "Disk " + str(i)

hdd = vm config.get hard disk(i)
emulated type = hdd.get emulated type /()

if emulated type == consts.PDT USE REAL DEVICE:

print "Uses Boot Camp: Disk " + hdd.get friendly name ()
elif emulated type == consts.PDT USE IMAGE FILE:

print "Uses image file " + '"' + hdd.get image path() + '"'
if hdd.get disk type() == consts.PHD EXPANDING HARD DISK:

print "Expanding disk"
elif hdd.get disk type() == consts.PHD PLAIN HARD DISK:

print "Plain disk"

print "Disk size:" + str(hdd.get disk size()) + " Mbyte"
print "Size on physical disk: " + str(hdd.get size on disk())

Obtaining network adapter information

def get net adapter info(vm) :

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

Obtain the network interface info.

The vm.net adapters sequence contains objects of type VmNetDev.
print ""

print "Network Adapters:"

count = vim_config.get net adapters count ()
for i in range (count) :

print mwn

print "Adapter " + str(i)

net adapter = vm config.get net adapter (i)

emulated type = net adapter.get emulated type()

+ " Mbyte"

153

Parallels Python API by Example

if emulated type == consts.PNA HOST ONLY:
print "Uses host-only networking"
elif emulated type == consts.PNA SHARED:
print "Uses shared networking"
elif emulated type == consts.PNA BRIDGED ETHERNET:
print "Uses bridged ethernet (bound to " +
net adapter.get bound adapter name() + ")"

print "MAC address " + str(net adapter.get mac address())

Modifying Virtual Machine Configuration

Vm.begin_edit and Vm.commit Methods

All virtual machine configuration changes must begin with the prlsdkapi.vm.begin edit and
end with the prlsdkapi.Vvm.commit call. These two methods are used to detect collisions with
other programs trying to modify the configuration settings of the same virtual machine at the same
time.

The vm.begin_ edit method timestamps the beginning of the editing operation. It does not lock
the machine, so other programs can still make changes to the same virtual machine. The method
will also automatically update your local virtual machine object with the current virtual machine
configuration information. This is done in order to ensure that the local object contains the changes
that might have happened since you obtained the virtual machine object. When you are done
making the changes, you must invoke the vm. commit method. The first thing that the method will
do is verify that the virtual machine configuration has not been modified by other programs since
you began making your changes. If a collision is detected, your changes will be rejected and

Vm. commit will throw an exception. In such a case, you will have to reapply the changes. In order
to do that, you will have to get the latest configuration using the Vvm. refresh config method
and re-evaluate it. Please note that vm. refresh config method will update the configuration
data in your local virtual machine object and will overwrite all existing data, including the changes
that you've made so far. Furthermore, the vm.begin edit method will also overwrite all existing
data (see above). If you don't want to loose your data, save it locally before invoking any of the two
methods.

154

Parallels Python API by Example

Name, Description, Boot Options, RAM size

The virtual machine name, description, and RAM size modifications are simple. They are performed
by invoking a corresponding method of a vm object. To modify the boot options (boot device
priority), obtain an instance of the prlsdkapi.BootDevice class representing each device. This
step is performed using the vmConfig.get boot dev count method to determine the total
number of boot devices, then iterating through the list and obtaining a BootDevice object using
the vmConfig.get boot dev method. To place a device at the specified position in the boot
device priority list, use the BootDevice.set sequence index method passing a value of O to
the first device, 1 to the second device, and so forth. If you have more than one instance of a
particular device type in the boot list (i.e. more than one CD/DVD drive), you will have to set a
sequence index for each instance individually. An instance is identified by an index that can be
obtained using the VvmBootDev.get index method. A device in the boot priority list can be
enabled or disabled using the BootDevice.set in use method. Disabling the device does not
remove it from the boot device list. To remove a device from the list, use the
BootDevice.remove method.

Example

Modify the vrtual machine name, RAM size, and boot options.

def vm edit (vm) :

Begin the virtual machine editing operation.
try:

vm.begin edit () .wait ()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e
return

Obtain the VmConfig object containing the virtual machine
configuration information.
vm config = vm.get config()

vm.set name (vm.get name () + " modified")
vm.set ram size (256)
vm.set description ("SDK Test Machine")

Modify boot device priority using the following order:.

CD > HDD > Network > FDD.

Remove all other devices from the boot priority list (if any).
count = vm config.get boot dev count ()

for i in range (count) :

Obtain an instance of the prlsdkapi.BootDevice class
containing the boot device information.

boot dev = vm config.get boot dev (i)

Enable the device.
boot dev.set in use (True)

Set the device sequence index.
dev_type = boot dev.get type ()

155

Parallels Python API by Example

if dev type == consts.PDE OPTICAL DISK:
boot dev.set sequence index(0)
elif dev type == consts.PDE HARD DISK:
boot dev.set sequence index (1)
elif dev type == consts.PDE GENERIC NETWORK ADAPTER:
boot dev.set sequence index(2)
elif dev type == consts.PDE FLOPPY DISK:
boot dev.set sequence index(3)
2lees

boot dev.remove ()

Commit the changes.
try:
vm.commit () .wait ()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" $ e
return

Adding a Hard Disk Drive

The following sample function demonstrates how to create a new image file and to add a new
virtual hard disk to a virtual machine. The steps are:

Mark the beginning of the editing operation.
2 Create a device object representing the new disk.

3 Set the device properties, including emulation type (image file or real device), disk type
(expanding or fixed), disk size, and disk name.

4 Create the image file.

5 Commit the changes.

Example

Add a new virtual hard disk to the virtual machine.

def add hdd(vm) :

Begin the virtual machine configuration editing.
try:

vm.begin edit () .wait
except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e

return

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

Create an instance of the prlsdkapi.VmHardDisk class.
hdd dev = vm config.create vm dev(consts.PDE HARD DISK)

Populate the object.
Set emulated type (image file or real device).
hdd dev.set emulated type (consts.PDT USE IMAGE FILE)

Set disk type (expanding or fixed)
hdd dev.set disk type(consts.PHD EXPANDING HARD DISK)

156

Parallels Python API by Example

Set disk size to 20 Gig.
hdd dev.set disk size (20000)

Choose and set a name for the new image file.
Both the friendly name and the sys name properties must be
populated and must contain the same value.

The new image file will be created in

the virtual machine directory.

To create the file in a different directory,

the name must contain the full directory path and
the hard disk name.

hdd name = vm config.get name() + " hdd sample.hdd"
hdd dev.set friendly name (hdd name)

hdd dev.set sys name (hdd name)

R

Enable the disk.
hdd dev.set enabled(True)

Create the image file.
First parameter - Overwrite the image file if it exists.
Second paramerer - Use non-interactive mode.
try:
hdd dev.create image (True, True)
except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

Commit the changes.
try:
vm.commit () .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" % e
return

print ("New hard disk was created successfully.")

Adding a Network Adapter

To add a new virtual network adapter to a virtual machine, the following steps must be taken:

Mark the beginning of the editing operation.
Create a device object representing the new adapter.
Set the emulation type (host-only, shared, or bridged).

If creating a bridged adapter, select the host adapter to bind the new adapter to.

a h ON =

Commit the changes.

Example

Add a network adapter to the virtual machine.
@param vm: An instance of prlsdkapi.Vm class identifying the
virtual machine.
@param networking type: Host-only/shared/bridged. Use one of the
consts.PNA xxx constants.
@param bound default: Used with bridged networking only.
Specify True to bound a new adapter to the

157

Parallels Python API by Example

def

158

default physical adapter. If False is passed,
the adapter will be bound to a specific physical
adapter (in this example, the adapter is

chosen randomly) .

add net adapter (server, vm, networking type, bound default = True):

Begin the virtual machine editing operation.
try:

vm.begin edit () .wait ()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" $ e
return

Obtain the VmConfig object containing the virtual machine
configuration information.
vm_config = vm.get config()

Create an instance of the prlsdkapi.VmNet class.
net adapter = vm config.create vm dev(consts.PDE GENERIC NETWORK ADAPTER)

Set the emulation type to the specified value.
net adapter.set emulated type (networking type)

For bridged netowkring mode, we'll have to bind the
new adapter to a network adapter on the host machine.
if networking type == consts.PNA BRIDGED ETHERNET:

To use the default adapter, simply set the

adapter index to -1.

if bound default == True:
net adapter.set bound adapter index(-1)

elisel:
To use a specific adapter, first obtain the
list of the adapters from the host machine.

Obtain an instance of prlsdkapi.ServerConfig containing
the host configuration information.
try:
result = server.get srv config().wait ()
except prlsdkapi.PrlSDKError, e:

[

print "Error: %s" % e
srv_config = result.get param()

Iterate through the list of the host network adapters.
In this example, we are simply selecting the first
adapter in the list and binding the virtual adapter to it.
The adapter is identified by its name.
for i in range(srv_config.get net adapters count()):
hw net adapter = srv config.get net adapter (i)
hw net adapter name = hw net adapter.get name ()
net adapter.set bound adapter name (hw net adapter name)
exit

Connect and enable the new virtual adapter.
net adapter.set connected(True)
net adapter.set enabled(True)

Commit the changes.
try:

Parallels Python API by Example

vm.commit () .wait ()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e
return

print ("Virtual network adapter created successfully")

Adding an Existing Virtual Machine

A host may have virtual machines that are not registered with the Parallels Service. This can
happen if a virtual machine was previously removed from the Parallels Service registry or if the
virtual machine files were manually copied from a different location. If you know the location of such
a virtual machine, you can easily register it with the Parallels Service.

Note: \When adding an existing virtual machine, the MAC addresses of its virtual network adapters are
kept unchanged. If the machine is a copy of another virtual machine, then you should set new MAC
addresses for its network adapters after you register it. The example below demonstrates how this can
be accomplished.

Example:

The following sample function demonstrates how to register an existing virtual machine. The
function takes a Server object identifying the Parallels Service and a string specifying the name
and path of the virtual machine directory (on Mac OS X it is the name of a bundle). It registers the
virtual machine and then modifies the MAC address of every virtual network adapter installed in it.

Add an existing virtual machine.
@param path: Name and path of the virtual machine directory or bundle.
The name normally has the .PVM extension.

def register vm(server, path):

try:
result = server.register vm(path, False).wait()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" $ e
return

vm = result.get param()
vm_config = vm.get config()
print vm config.get name() + " was registered."

Generate a new MAC addresses for all virtual network adapters.
This should be done when a virtual machine was copied from another host.
try:
vm.begin edit ()
except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

Iterate through the network adapter list and
generate a new MAC address.
The get net adapter (i) method returns an instance of the VmNet class.
for i in range(vm config.get net adapters count()):
net adapter = vm config.get net adapter (i)

159

Parallels Python API by Example

net adapter.generate mac addr ()

Commit the changes.
try:
vm.commit () .wait ()
except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

Removing an Existing Virtual Machine

If a virtual machine is no longer needed, it can be removed. There are two options for removing a
virtual machine:

« Un-register the virtual machine without deleting its files. You can re-register the virtual machine
later if needed.

« Delete the virtual machine from the host completely. The virtual machine files will be
permanently deleted and cannot be recovered if this option is used.

Example

The following sample function illustrates how to implement both options. The function takes a vm
object identifying the virtual machine and a boolean value indicating whether the virtual machine
files should be deleted from the host computer.

wnon

Remove an existing virtual machine.
@param vm: An instance of prlsdkapi.Vm class identifying
the virtual machine.
@param delete: A boolean value indicating whether the
virtual machine files should be permanently deleted
from the host.

def remove vm(vm, delete):

if delete == False:
Unregister the virtual machine but don't delete its files.
try:

vimm.unreg ()

except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

else:

Unregister the machine and delete its files from the hard drive.

try:
vm.delete ()

except prlsdkapi.PrlSDKError, e:
print "Error: %s" % e
return

print vm.get config().get name() + " has been removed."

160

Parallels Python API by Example

Cloning a Virtual Machine

A new virtual machine can be created by cloning an existing virtual machine. The machine will be
created as an exact copy of the source virtual machine and will be automatically registered with the
Parallels Service. The cloning operation is performed using the pr1sdkapi .Vm.clone method.
The following parameters must be specified when cloning a virtual machine:

1 A unique name for the new virtual machine (the new name is NOT generated automatically).

2 The name of the directory where the new virtual machine files should be created or an empty
string to create the files in the default directory.

3 A boolean value specifying whether to create a regular virtual machine or a virtual machine
template. Virtual machine templates are used to create other virtual machines from them. You
cannot run a template.

The source virtual machine must be registered with the Parallels Service before it can be cloned.

Sample

Clone a virtual machine.
@param vm: An instance of the prlsdkapi.Vm class identifying
the source virtual machine.

def clone vm(vm) :

try:
new name = "Clone 2 of " + vm.get config() .get name ()
print "Clonning is in progress..."
Second parameter - create a new machine in the

default directory.
Third parameter - create a virtual machine (not a template).
vm.clone (new name, "", False).wait()

except prlsdkapi.PrlSDKError, e:

[

print "Error: %s" % e
return

print "Cloning was successful. New virtual machine name: " + new name

Executing a Program in a Virtual Machine

You can execute a program inside a virtual machine from your program using the Python API. The
virtual machine must have Parallels Tools installed for this functionality to work.

To execute a program, you need to perform the following steps:

1 Log in to a virtual machine. You have three choices here (the details are described in the code
sample below):

« If you want to execute a console program as a specific user, you can do so by supplying the
user ID and password. A new session will be created in a virtual machine.

161

Parallels Python API by Example

« If you want to execute a console program as a superuser (root, LocalSystem), you can use a
login ID that is predefined in the API for this purpose.

« If you want to run a GUI application, you need to use a predefined login ID that's used to
bind to an existing GUI session in a virtual machine. For this login type to work, the virtual
machine must be running and a user must be logged in to it. Please note that after you
launch a GUI application, you cannot control it. For instance, if the application requires user
interaction, you cannot directly control it from your Python program. If you need to interact
with a GUI program, use the Remote Desktop Access functionality (p. 163).

Create an object to hold the program input parameters and populate it.
Execute the program.

Evaluate the results. Please note that you cannot obtain the results of the program execution
directly. You can only determine whether the program executed successfully or not.

Sample

The following sample program demonstrates how to execute a batch file (C:\\123.bat) in Windows
running in a virtual machine. To test the program, create a batch file with a simple instruction (e.g.
creating a directory on the C: drive) and see if after executing the program, the directory is actually
created.

Executes a batch file in a Windows virtual machine.
@param vm: An instance of the prlsdkapi.Vm class identifying
the source virtual machine.

def exec batch (vm) :
Uncomment the desired "g login = " and "g password = " lines below.

Bind to an existing session.

Use this login to run a console program as a
superuser (LocalSystem in Windows, root in Linux) .
Use this exact login ID and leave the password blank.
g login = "531582ac-3dce-446f-8c26-dd7e3384dcf4"

g _password = ""

S+ o o e

Log in as a specific user (a new session will be created).
#g login = "your user name"
#g_password = "your password"

Bind to an existing GUI session.

The user must be logged in to the virtual machine.

Use this exact login ID and leave the password blank.
#g_login = "4a5533a7-31c6-4d7a-a400-1£330dc57a9d"

#g password = ""

Create a StringList object to hold the program input parameters and populate it.
hArgsList = prlsdkapi.StringList ()

hArgsList.add item("cmd.exe")

hArgsList.add item("/C")

hArgsList.add item("C:\\123.bat")

Create an empty StringList object.
The object is passed to the Vm guest.run program() method and is used to

162

Parallels Python API by Example

specify the list of environment variables and their values to add to the program
execution environment. In this sample, we are not adding any variables.

If you wish to add a variable, add it in the var name=var value format.
hEnvsList = prlsdkapi.StringList ()

hEnvsList.add item("")

Establish a user session with the virtual machine.

The Vm.login in guest () method returns a VmGuest object, which is
obtained from the Job using the Result.get param() method.
vm_guest = vm.login in guest (g login, g password) .wait () .get param()

Run the program.
try:

vm_guest.run program("cmd.exe", hArgsList, hEnvsList) .wait ()
except prlsdkapi.PrlSDKError, e:

o)

print "Error: %s" $ e

Logout from the virtual machine.
vm_guest.logout () .wait ()

Remote Desktop Access

Remote Desktop Access is a functionality that allows to remotely capture screenshots of a virtual
machine desktop and to send keyboard and mouse commands to it. With this functionality, you
can programmatically connect to a remote virtual machine and run its applications as if you were
sitting at the virtual machine's console. Typical uses of the Remote Desktop Access functionality
include creating automation scripts for unattended operating system and other software
installations, implementing automated test systems, or automating any other routine activity, which
would otherwise require you to physically look at the virtual machine screen and operate with its
keyboard and mouse.

The functionality is supported in both Parallels C and Python APIs. C API provides additional
functions that can be used to create remote desktop applications with graphical user interfaces.
Python API contains a simplified version of the C API functionality and is best suited for writing
automation scripts.

The Remote Desktop Access functionality is provided by the prlsdkapi.vmIO class. There are
three groups of methods in the class:

« Primary display capture. These functions allow to capture the primary display of the remote
virtual machine. In scripts, you can take a snapshot of a screen of interest in advance and save
it to a file. At runtime, you capture virtual machine screens after every interaction with it and
perform a bit-by-bit comparison of the saved screen and a snapshot that you take each time. If
the comparison operation determines that the screen currently displayed on the virtual machine
desktop is the screen of interest, you can interact with user interface controls that it contains
(keystrokes on text-based screens; visual controls on GUI screens) by sending mouse or
keyboard commands to the virtual machine. The assumption here is that the desktop
background is static, individual windows always open at the same coordinates, have a fixed
size, and contain the same number of controls and data in the same exact default state.

« Mouse control. These functions provide mouse control in a virtual machine. You can change
the position of the mouse pointer, press and release mouse buttons, and use a scroll wheel.
163

Parallels Python API by Example

Keyboard control. These functions send a key/action code combination to the virtual machine.
In scripts, you can use these functions to interact with controls on a window opened inside a
virtual machine (pressing buttons, selecting options, etc.). In a typical GUI application, essential
visual controls usually have keyboard shortcuts (accelerator keys) assigned to them. For
example, to click a button, you can send an accelerator key combination to the virtual machine;
to select/deselect a check-box you similarly send a keyboard shortcut assigned to it, and so
forth. If a control doesn't have a shortcut, then you will have to use mouse control functions to
position a mouse pointer over it and clicking the mouse button (you will have to determine the
control's coordinates in advance to properly position the mouse pointer).

The use of the this functionality is not limited to the tasks described above. You can use it for
anything that requires taking screenshots of a virtual machine desktop and controlling its keyboard
and mouse input.

Creating a Simple OS Installation Program

In this section, we will write a simple program that can be used to automatically install a
hypothetical operating system inside a brand new virtual machine.

Step 1 - Preparation

First, we have to capture all screens that the OS installation wizard displays to the user.

1

Create a blank virtual machine, mount a CD drive in it, insert the OS installation disk (or mount
an ISO image of the disk), and start the virtual machine.

Using the Parallels API, programmatically connect to the virtual machine and begin a Remote
Desktop Access session with it.

At this point, the first OS installation screen should be displayed, waiting for user interaction.
Using the Remote Desktop Access API, capture this screen to a file.

Go back to the virtual machine console and manually make the appropriate selections on it (for
example, press the Continue button). Write down the accelerator key assigned to the control
(Alt-N for instance, or Enter if this is a default button, or the appropriate keystroke if the screen
is in a text mode).

When the next screen opens, capture it to a file using the API the same way you captured the
first screen. Write down the controls that advance you to the next installation screen the same
way we did in the previous step.

Repeat for all of the installation screens until the operating system is fully installed, or until a
desired point in the installation process is reached.

In the end, you should have a collection of files containing images of installation screens and
instructions for each screens describing the actions that should be taken on each one of them.

Step 2 - Writing the automated OS installation program

Now that we have screenshots and interaction instructions, we can write the program that will
automatically install the OS on any blank virtual machine.

164

Parallels Python API by Example

—r

Every remote desktop access session must begin with the VmIO.connect to wvm method
invocation and end with vmIO.disconnect from vm. These step are necessary to properly
initialize/deinitialize the remote desktop access library and protocol.

2 Capture the current virtual machine desktop screen to a file.

3 Make a bit-by-bit comparison of the screen that you've just captured to every file that you
saved in Step 1 - Preparation (above). Once you find the matching screen, continue to the
next step (note: for bit-by-bit comparison to work, a lossless compression or no compression
must be used when saving captured screen data).

4 Read the interaction instructions for the screen you've just found and send the appropriate
keyboard (or mouse if necessary) commands to the virtual machine. For example, if the
instruction says "press Enter on the keyboard", send the "enter key pressed" command (the
actual key and mouse command codes are explained in the Parallels Python APl Reference
guide and some examples are provided below).

5 Wait a while for the next screen on the virtual machine desktop to open and repeat the capture
and user interaction procedure the same exact way as explained in the step above.

6 Repeat until all saved screens are found and processed. Your operating system is installed.

Bit-by-bit comparison notes

In theory, the screen comparison procedure described above (comparing two full screens) should
work. In reality, it is virtually impossible to achieve a state when an individual screen remains
absolutely static. Such things as blinking cursor, messages from the program vendor, and other
animations will make each capture different from another. Therefore, instead of comparing an entire
screen, the following approach can be used:

1 In the Preparation step described above, capture an entire virtual machine desktop screen and
then select a rectangular region on it that is guaranteed to be absolutely static and is unique
enough to be used to identify the screen. This can be the screen name (such as "Step 1" or
similar), a unique static picture or text displayed on it, and so forth. Copy the region from the
image using an image editor of your choice and save it to a file.

2 \When determining the identity of a screen captured at runtime, start at the beginning of the full
screen image and see if a screen region that you saved earlier matches the region on the
screen at that position. Since you know that the region never changes, you can safely use a bit-
bit-comparison. If the two regions don't match, move one pixel forward and compare again.
Repeat until the match is found or until the end of file is reached.

Example

The following sample program illustrates the implementation of the steps above. Please note that
this is not a complete working program. The program does not include the implementation of the
algorithm described in the Bit-by-bit comparison subsection (above). An implementation of the
algorithm depends on the image format used and in any case should be simple and
straightforward. Some of the steps in the program are simplified, specifically the keys array
contains only three keys that are used to demonstrate how to send the key commands to the
virtual machine. The main steps concerning the API usage are included and can be used as a
starting point for your own implementation.

165

Parallels Python API by Example

import sys
import prlsdkapi

consts = prlsdkapi.prlsdk.consts

if len(sys.argv) != 3:

print "Usage: install os <VM name> <path to iso>"

exit ()

Initialize the Parallels API library.

prlsdkapi.init server sdk()

Create a server object.
server = prlsdkapi.Server ()

Log in.
try:
"10.30.18.99", "root", "gawsed",

consts.PSL NORMAL SECURITY

result = server.login("10.30.18.99", "root",

consts.PSL HIGH SECURITY) .wait ()
except prlsdkapi.prlsdk.PrlSDKError,

print "Login error: $s" % e
exit ()

Get a list of virtual machines.

e:

Find the specified virtual machine and

obtain an object identifying it.
try:

result = server.get vm list () .wait()

except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e
exit ()

found = False

for 1 in range(result.get params count()) :

VM = result.get param by index (i)

if VM.get name() == sys.argv([l]:
found = True
break

if found == False:

print "Specified virtual machine not found."

exit ()

Obtain an object identifying the
CD/DVD drive
cdrom = VM.get optical disk(0)

Begin the virtual machine editing operation.

VM.begin edit ()

Mount the OS installation ISO image.
cdrom.set emulated type (consts.PDT USE IMAGE FILE)

cdrom.set sys name(sys.argv[2])
cdrom.set image path(sys.argv([2])

Commit the changes to the virtual machine.

VM. commit ()

Start the virtual machine.
VM.start () .wait ()

166

"gawsed",

4

0,

0,

Parallels Python API by Example

Instantiate the prlsdkapi.vVmIO class.
vm 1o = prlsdkapi.VmIO ()

Begin a Remote Desktop Access session.
try:

vm_io.connect to vm (VM) .wait ()
except prlsdkapi.PrlSDKError, e:

print "Error: %s" % e
exit ()

Define the name of the file to save the
captured screen data to.
current screen = "current.bmp"

Set the reference screenshot count to O.
ref count = 0

Define the names of files containing
reference screenshots.
ref files = ['l.bmp', '2.bmp', '3.bmp']

Define the keyboard keys that will be used
to interact with the remote desktop.
keys = ['enter', 'fl', 'enter']

Capture the virtual machine screen, find the matching
screen in the list of reference files and send the
appropriate keyboard command to the virtual machine.
Repeat for all screens.

while True:

Get a reference file name.

ref screen = ref files[ref count]

#
#
#
#

Capture the current virtual machine desktop screen and save it

into a file as a BMP image.

The parameters are:

Target file name

X coordinate

Y coordinate

Width (-1 for full screen)

Height (-1 for full screen)

Image format

vmn_io.sync capture screen region to file(VM, current screen, \
consts.PIF BMP)

He oS S S e

Do a bit-by-bit comparison of the captured screen and

the reference screen for this iteration.

The actual comparison procedure depends on the data format used.
The bb cmp() function DOES NOT exist in this sample program.

You will have to implement it yourself.

if bb cmp(current screen, ref screen):

[

print "%d screen valid" % ref count

Press the appropriate key.
press = consts.PKE PRESS
release = consts.PKE RELEASE
key = keys[ref count]

key = key.upper ()

Determine the key scan code based on its name.

167

Parallels Python API by Example

The codes are defined in the ScanCodesList constant.

For the complete list of codes, start Python from the command line,
import the prlsdkapi module, and issue the

"print prlsdkapi.prlsdk.consts.ScanCodesList" statement.

scan _code = consts.ScanCodesList [key]

Send the key command to the virtual machine.
vm_io.send key event (VM, scan code, press)

vm io.send key event (VM, scan code, release)

If still have reference files to process, continue, otherwise, exit.

if ref count < (len(ref files) - 1):
ref count = ref count + 1

else:
print "Os is installed."
break

End the Remote Desktop Access session.
vmn_io.disconnect from vm (VM)

Stop the virtual machine.
VM.stop () .wait ()

Logoff and deinitialize the library.

server.logoff ()
prlsdkapi.deinit sdk()

168

Index

Index

A

Adding a Hard Disk Drive - 156

Adding a Network Adapter - 157

Adding an Existing Virtual Machine - 73, 159
Asynchronous Functions - 20
Asynchronous Methods - 134

B

Bridged Networking - 87
Building the Dynamic Library - 130

C

Class Methods - 133

Classes - 133

Cloning a Virtual Machine - 75, 161

Compiling Client Applications - 8

Compiling with Framework - 14

Compiling with SdkWrap - 8

Connecting to Parallels Service and Logging
In - 140

Converting a Regular Virtual Machine to a
Template - 98

Converting a Template to a Regular Virtual
Machine - 99

Creating a Basic Application - 138

Creating a New Virtual Machine - 66, 149

Creating a New Virtual Machine From a
Template. - 100

Creating a Simple OS Installation Program -
164

Creating a Template From Scratch - 96

D

Deleting a Virtual Machine - 77
Determining Virtual Machine State - 61

E

Encryption Plug-in - 121
Encryption Plug-in Basics - 121
Error Handling - 26, 137

Events - 102
Executing a Program in a Virtual Machine -
161

G
Getting Started - 6
H

Handles - 18

Hard Disks - 82

Host Operations - 35, 142

Host-only and Shared Networking - 85

I
Implementing a Plug-in - 124
M

Managing Files In The Host OS - 48

Managing Licenses - 51

Managing Parallels Service Preferences - 37,
144

Managing Parallels Service Users - 43

Managing User Access Rights - 91

Modifying Virtual Machine Configuration - 79,
154

N

Name, Description, Boot Options - 80

Name, Description, Boot Options, RAM size -
155

Network Adapters - 85

0

Obtaining a List of Templates - 94

Obtaining a PHT_VM_CONFIGURATION
handle - 80

Obtaining a Problem Report - 53

Obtaining Disk I/0O Statistics - 114

Obtaining Performance Statistics - 112

Obtaining Server Handle and Logging In - 31

Obtaining the Virtual Machine List - 146

Index

Obtaining the Virtual Machines List - 55

Obtaining Virtual Machine Configuration Data
- 151

Obtaining Virtual Machine Configuration
Information - 59

Overview - 6

P

Package and Modules - 132
Parallels C API by Example - 30
Parallels C APl Concepts - 8
Parallels Python API by Example - 138
Parallels Python API Concepts - 132
Performance Monitoring - 116
Performance Statistics - 112
Performing Power Operations - 148
Plug-in Installation and Usage - 131
PriVm_BeginEdit and PriVm_Commit
Functions - 79

R

RAM Size - 82

Receiving and Handling Events - 102

Remote Desktop Access - 163

Removing an Existing Virtual Machine - 160

Responding to Parallels Service Questions -
104

Retrieving Host Configuration Info - 142

Retrieving Host Configuration Information - 35

S

Searching for a Virtual Machine - 147

Searching for Parallels Servers - 41

Searching for Virtual Machine by Name - 57

Searching for Virtual Machines - 69

Starting, Stopping, Resetting a Virtual
Machine - 63

Strings as Return Values - 25

Suspending and Pausing a Virtual Machine -
64

Synchronous Functions - 20

Synchronous Methods - 134

System Requirements - 6

T
The Encryption API Reference - 121

\'

Virtual Machine Operations - 55, 145
Vm.begin_edit and Vm.commit Methods -
154

w
Working with Virtual Machine Templates - 94

	Getting Started
	Overview
	System Requirements

	Parallels C API Concepts
	Compiling Client Applications
	Compiling with SdkWrap
	Compiling with Framework

	Handles
	Synchronous Functions
	Asynchronous Functions
	Strings as Return Values
	Error Handling

	Parallels C API by Example
	Obtaining Server Handle and Logging In
	Host Operations
	Retrieving Host Configuration Information
	Managing Parallels Service Preferences
	Searching for Parallels Servers
	Managing Parallels Service Users
	Managing Files In The Host OS
	Managing Licenses
	Obtaining a Problem Report

	Virtual Machine Operations
	Obtaining the Virtual Machines List
	Searching for Virtual Machine by Name
	Obtaining Virtual Machine Configuration Information
	Determining Virtual Machine State
	Starting, Stopping, Resetting a Virtual Machine
	Suspending and Pausing a Virtual Machine
	Creating a New Virtual Machine
	Searching for Virtual Machines
	Adding an Existing Virtual Machine
	Cloning a Virtual Machine
	Deleting a Virtual Machine
	Modifying Virtual Machine Configuration
	PrlVm_BeginEdit and PrlVm_Commit Functions
	Obtaining a PHT_VM_CONFIGURATION handle
	Name, Description, Boot Options
	RAM Size
	Hard Disks
	Network Adapters
	Host-only and Shared Networking
	Bridged Networking

	Managing User Access Rights
	Working with Virtual Machine Templates
	Obtaining a List of Templates
	Creating a Template From Scratch
	Converting a Regular Virtual Machine to a Template
	Converting a Template to a Regular Virtual Machine
	Creating a New Virtual Machine From a Template.

	Events
	Receiving and Handling Events
	Responding to Parallels Service Questions

	Performance Statistics
	Obtaining Performance Statistics
	Obtaining Disk I/O Statistics

	Performance Monitoring

	Encryption Plug-in
	Encryption Plug-in Basics
	The Encryption API Reference
	Implementing a Plug-in
	Building the Dynamic Library
	Plug-in Installation and Usage

	Parallels Python API Concepts
	Package and Modules
	Classes
	Class Methods
	Synchronous Methods
	Asynchronous Methods

	Error Handling

	Parallels Python API by Example
	Creating a Basic Application
	Connecting to Parallels Service and Logging In
	Host Operations
	Retrieving Host Configuration Info
	Managing Parallels Service Preferences

	Virtual Machine Operations
	Obtaining the Virtual Machine List
	Searching for a Virtual Machine
	Performing Power Operations
	Creating a New Virtual Machine
	Obtaining Virtual Machine Configuration Data
	Modifying Virtual Machine Configuration
	Vm.begin_edit and Vm.commit Methods
	Name, Description, Boot Options, RAM size
	Adding a Hard Disk Drive
	Adding a Network Adapter

	Adding an Existing Virtual Machine
	Removing an Existing Virtual Machine
	Cloning a Virtual Machine
	Executing a Program in a Virtual Machine

	Remote Desktop Access
	Creating a Simple OS Installation Program

	Index

